--- license: apache-2.0 pipeline_tag: sentence-similarity --- ONNX port of [prithivida/Splade_PP_en_v1](https://huggingface.co/prithivida/Splade_PP_en_v1) for text classification and similarity searches. ### Usage Here's an example of performing inference using the model with [FastEmbed](https://github.com/qdrant/fastembed). ```py from fastembed import SparseTextEmbedding documents = [ "You should stay, study and sprint.", "History can only prepare us to be surprised yet again.", ] model = SparseTextEmbedding(model_name="prithivida/Splade_PP_en_v1") embeddings = list(model.embed(documents)) # [ # SparseEmbedding(values=array( # [0.45940185, 0.64054322, 0.2425732, 0.1623179, 1.20566428, # 0.62039357...]), # indices=array([1012, 1998, 2000, 2005, 2017, 2022...])), # SparseEmbedding(values=array([ # 0.09767706, 0.4374367, 0.00468039, 1.01167965, 1.02318227, 1.30155718 # ...]), # indices=array([2017, 2022, 2025, 2057, 2064, 2069...])) # ] ```