--- license_name: tongyi-qianwen-research license_link: https://huggingface.co/Qwen/CodeQwen1.5-7B/blob/main/LICENSE tags: - code pipeline_tag: text-generation license: other base_model: NTQAI/Nxcode-CQ-7B-orpo --- # QuantFactory/Nxcode-CQ-7B-orpo-GGUF This is quantized version of [NTQAI/Nxcode-CQ-7B-orpo](https://huggingface.co/NTQAI/Nxcode-CQ-7B-orpo) created suing llama.cpp ## Model Description Nxcode-CQ-7B-orpo is an [Monolithic Preference Optimization without Reference Model](https://arxiv.org/abs/2403.07691) fine-tune of Qwen/CodeQwen1.5-7B on 100k samples of high-quality ranking data. ## [Evalplus](https://github.com/evalplus/evalplus) | EvalPlus | pass@1 | | --- | --- | | HumanEval | 86.6 | | HumanEval+ | 83.5 | | MBPP(v0.2.0) | 82.3 | | MBPP+(v0.2.0) | 70.4 | We use a simple template to generate the solution for evalplus: ```python "Complete the following Python function:\n{prompt}" ``` [Evalplus Leaderboard](https://evalplus.github.io/leaderboard.html) | Models | HumanEval | HumanEval+| |------ | ------ | ------ | | GPT-4-Turbo (April 2024)| 90.2| 86.6| | GPT-4 (May 2023)| 88.4| 81.17| | GPT-4-Turbo (Nov 2023)| 85.4| 79.3| | CodeQwen1.5-7B-Chat| 83.5| 78.7| | claude-3-opus (Mar 2024)| 82.9| 76.8| | DeepSeek-Coder-33B-instruct| 81.1| 75.0| | WizardCoder-33B-V1.1| 79.9| 73.2| | OpenCodeInterpreter-DS-33B| 79.3| 73.8| | speechless-codellama-34B-v2.0| 77.4| 72| | GPT-3.5-Turbo (Nov 2023)| 76.8| 70.7| | Llama3-70B-instruct| 76.2| 70.7| ## Bigcode Leaderboard [Bigcode Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard) **09/05/2024** Top 1 average score. Top 2 winrate. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5ee1b417636bdb3834e2da19/OQonD6a7aNjnN9SsTkFp-.png) ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. You should upgrade the transformers if you receive an error when loading the tokenizer ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "NTQAI/Nxcode-CQ-7B-orpo", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("NTQAI/Nxcode-CQ-7B-orpo") prompt = """Complete the following Python function: from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """ """ messages = [ {"role": "user", "content": prompt} ] inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) res = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) ```