--- library_name: transformers license: gemma base_model: jeiku/Dante_9B tags: - generated_from_trainer model-index: - name: outputs/out results: [] --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/Virgil_9B-GGUF This is quantized version of [FourOhFour/Virgil_9B](https://huggingface.co/FourOhFour/Virgil_9B) created using llama.cpp # Original Model Card [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: jeiku/Dante_9B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: FourOhFour/RP_Phase type: sharegpt conversation: chatml chat_template: chatml val_set_size: 0.0025 output_dir: ./outputs/out adapter: lora_r: lora_alpha: lora_dropout: lora_target_linear: sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: false liger_swiglu: true liger_fused_linear_cross_entropy: false wandb_project: chatml9B wandb_entity: wandb_watch: wandb_name: chatml9B wandb_log_model: gradient_accumulation_steps: 32 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000008 weight_decay: 0.05 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 2 debug: deepspeed: deepspeed_configs/zero3_bf16.json fsdp: fsdp_config: special_tokens: pad_token: ```

# outputs/out This model is a fine-tuned version of [jeiku/Dante_9B](https://huggingface.co/jeiku/Dante_9B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 14 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7474 | 0.0135 | 1 | 1.7996 | | 1.6968 | 0.2570 | 19 | 0.9551 | | 1.6583 | 0.5139 | 38 | 0.8805 | | 1.5418 | 0.7709 | 57 | 0.7926 | | 1.3997 | 1.0271 | 76 | 0.7500 | | 1.3921 | 1.2847 | 95 | 0.7168 | | 1.4141 | 1.5424 | 114 | 0.7155 | | 1.4139 | 1.8 | 133 | 0.7075 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0