--- thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png license: gemma language: - ja - en tags: - gemma2 - conversational base_model: - google/gemma-2-2b - google/gemma-2-2b-it - rinna/gemma-2-baku-2b base_model_relation: merge pipeline_tag: text-generation library_name: transformers --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/gemma-2-baku-2b-it-GGUF This is quantized version of [rinna/gemma-2-baku-2b-it](https://huggingface.co/rinna/gemma-2-baku-2b-it) created using llama.cpp # Original Model Card # `Gemma 2 Baku 2B Instruct (rinna/gemma-2-baku-2b-it)` ![rinna-icon](./rinna.png) # Overview The model is an instruction-tuned variant of [rinna/gemma-2-baku-2b](https://huggingface.co/rinna/gemma-2-baku-2b), utilizing Chat Vector and Odds Ratio Preference Optimization (ORPO) for fine-tuning. It adheres to the gemma-2 chat format. | Size | Continual Pre-Training | Instruction-Tuning | | :- | :- | :- | | 2B | Gemma 2 Baku 2B [[HF]](https://huggingface.co/rinna/gemma-2-baku-2b) | Gemma 2 Baku 2B Instruct [[HF]](https://huggingface.co/rinna/gemma-2-baku-2b-it) | * **Model architecture** A 26-layer, 2304-hidden-size transformer-based language model. Please refer to the [Gemma 2 Model Card](https://www.kaggle.com/models/google/gemma-2/) for detailed information on the model's architecture. * **Training** **Model merging.** The base model was endowed with instruction-following capabilities through a chat vector addition process. The chat vector was derived by subtracting the parameter vectors of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) from [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it), as follows. ~~~~text rinna/gemma-2-baku-2b + 1.0 * (google/gemma-2-2b-it - google/gemma-2-2b) ~~~~ During this process, the embedding layer was excluded during the subtraction and addition of parameter vectors. **OPRO** was applied using a subset of the following dataset to further refine the performance of the merged model. - rinna's internal dataset * **Contributors** - [Xinqi Chen](https://huggingface.co/Keely0419) - [Toshiaki Wakatsuki](https://huggingface.co/t-w) - [Kei Sawada](https://huggingface.co/keisawada) --- # Benchmarking Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html). --- # How to use the model ~~~~python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "rinna/gemma-2-baku-2b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, attn_implementation="eager", ) chat = [ { "role": "user", "content": "西田幾多郎とはどんな人物ですか?" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) outputs = model.generate( input_ids, max_new_tokens=512, ) response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True) print(response) ~~~~ It is recommended to use eager attention when conducting batch inference under bfloat16 precision. Currently, Gemma 2 yields NaN values for input sequences with padding when the default attention mechanism (torch.scaled_dot_product_attention) is employed in conjunction with bfloat16. --- # Tokenization The model uses the original [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) tokenizer. --- # How to cite ```bibtex @misc{rinna-gemma-2-baku-2b-it, title = {rinna/gemma-2-baku-2b-it}, author = {Chen, Xinqi and Wakatsuki, Toshiaki and Sawada, Kei}, url = {https://huggingface.co/rinna/gemma-2-baku-2b-it} } @inproceedings{sawada2024release, title = {Release of Pre-Trained Models for the {J}apanese Language}, author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh}, booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)}, month = {5}, year = {2024}, pages = {13898--13905}, url = {https://aclanthology.org/2024.lrec-main.1213}, note = {\url{https://arxiv.org/abs/2404.01657}} } ``` --- # References ```bibtex @article{gemma-2-2024, title = {Gemma 2}, url = {https://www.kaggle.com/models/google/gemma-2}, publisher = {Kaggle}, author = {Gemma Team}, year = {2024} } @article{huang2023chat, title = {Chat Vector: A Simple Approach to Equip LLMs with Instruction Following and Model Alignment in New Languages}, author = {Huang, Shih-Cheng and Li, Pin-Zu and Hsu, Yu-Chi and Chen, Kuang-Ming and Lin, Yu Tung and Hsiao, Shih-Kai and Tzong-Han Tsai, Richard and Lee, Hung-yi}, year = {2023}, url = {https://arxiv.org/abs/2310.04799} } @article{hong2024orpo, title = {ORPO: Monolithic Preference Optimization without Reference Model}, author = {Hong, Jiwoo and Lee, Noah and Thorne, James}, year = {2024}, url = {https://arxiv.org/abs/2403.07691} } ``` --- # License [Gemma Terms of Use](https://ai.google.dev/gemma/terms)