--- language: ru datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event - speech model-index: - name: XLS-R 1B Wav2Vec2 Russian by Rasmus Toivanen results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ru metrics: - name: Test WER type: wer value: 10.83 - name: Test CER type: cer value: 2.41 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ru metrics: - name: Test WER type: wer value: 37.71 - name: Test CER type: cer value: 12.98 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ru metrics: - name: Test WER type: wer value: 31.89 --- # wav2vec2-xlsr-1b-ru This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - Wer: 0.0971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.5462 | 0.35 | 500 | 0.4027 | 0.3575 | | 0.498 | 0.69 | 1000 | 0.2588 | 0.2513 | | 0.4279 | 1.04 | 1500 | 0.2265 | 0.2204 | | 0.4099 | 1.38 | 2000 | 0.2189 | 0.1979 | | 0.4688 | 1.73 | 2500 | 0.2100 | 0.1920 | | 0.2241 | 2.07 | 3000 | 0.1980 | 0.1767 | | 0.2056 | 2.42 | 3500 | 0.2020 | 0.1683 | | 0.3423 | 2.76 | 4000 | 0.1862 | 0.1606 | | 0.2478 | 3.11 | 4500 | 0.1787 | 0.1563 | | 0.3079 | 3.45 | 5000 | 0.1759 | 0.1555 | | 0.2477 | 3.8 | 5500 | 0.1713 | 0.1423 | | 0.1718 | 4.14 | 6000 | 0.1695 | 0.1391 | | 0.1675 | 4.49 | 6500 | 0.1677 | 0.1372 | | 0.1631 | 4.83 | 7000 | 0.1652 | 0.1333 | | 0.1429 | 5.18 | 7500 | 0.1605 | 0.1308 | | 0.1505 | 5.52 | 8000 | 0.1612 | 0.1245 | | 0.1385 | 5.87 | 8500 | 0.1487 | 0.1225 | | 0.1285 | 6.22 | 9000 | 0.1526 | 0.1201 | | 0.1153 | 6.56 | 9500 | 0.1464 | 0.1172 | | 0.1159 | 6.91 | 10000 | 0.1505 | 0.1143 | | 0.1061 | 7.25 | 10500 | 0.1444 | 0.1106 | | 0.1016 | 7.6 | 11000 | 0.1427 | 0.1075 | | 0.1125 | 7.94 | 11500 | 0.1386 | 0.1045 | | 0.0937 | 8.29 | 12000 | 0.1403 | 0.1022 | | 0.1059 | 8.63 | 12500 | 0.1406 | 0.1022 | | 0.0857 | 8.98 | 13000 | 0.1372 | 0.0992 | | 0.0901 | 9.32 | 13500 | 0.1380 | 0.0977 | | 0.0913 | 9.67 | 14000 | 0.1352 | 0.0971 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0