# coding=utf-8 # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RWKV5.""" import json import os from typing import TYPE_CHECKING, List, Optional, Tuple, Union from transformers.tokenization_utils import PreTrainedTokenizer from transformers.tokenization_utils_base import ( BatchEncoding, EncodedInput, TextInput, TruncationStrategy, ) from transformers.utils import PaddingStrategy, TensorType, logging, to_py_obj if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "rwkv_vocab_v20230424.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "RWKV/rwkv-5-world-169m": "https://huggingface.co/RWKV/rwkv-5-world-169m/blob/main/rwkv_vocab_v20230424.txt", }, } class TRIE: __slots__ = tuple("ch,to,values,front".split(",")) to: list values: set def __init__(self, front=None, ch=None): self.ch = ch self.to = [None for ch in range(256)] self.values = set() self.front = front def __repr__(self): fr = self ret = [] while fr is not None: if fr.ch is not None: ret.append(fr.ch) fr = fr.front return "" % (ret[::-1], self.values) def add(self, key: bytes, idx: int = 0, val=None): if idx == len(key): if val is None: val = key self.values.add(val) return self ch = key[idx] if self.to[ch] is None: self.to[ch] = TRIE(front=self, ch=ch) return self.to[ch].add(key, idx=idx + 1, val=val) def find_longest(self, key: bytes, idx: int = 0): u: TRIE = self ch: int = key[idx] while u.to[ch] is not None: u = u.to[ch] idx += 1 if u.values: ret = idx, u, u.values if idx == len(key): break ch = key[idx] return ret class RWKVWorldTokenizer(PreTrainedTokenizer): vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__(self, vocab_file, errors="replace", pad_token="0", **kwargs): self.add_bos_token = False self.encoder = {} sorted = [] # must be already sorted with open(vocab_file, "r", encoding="utf-8") as f: lines = f.readlines() for l in lines: idx = int(l[: l.index(" ")]) x = eval(l[l.index(" ") : l.rindex(" ")]) x = x.encode("utf-8") if isinstance(x, str) else x assert isinstance(x, bytes) assert len(x) == int(l[l.rindex(" ") :]) sorted += [x] self.encoder[idx] = x self.decoder = {} for k, v in self.encoder.items(): self.decoder[v] = int(k) self.trie = TRIE() for t, i in self.decoder.items(): _ = self.trie.add(t, val=(t, i)) self.errors = errors # how to handle errors in decoding self.cache = {} self.first_max_length = 0 super().__init__( errors=errors, **kwargs, ) @property def eos_token_id(self) -> Optional[int]: return 0 @property def eot_token_id(self) -> Optional[int]: return 0 @property def pad_token_id(self) -> Optional[int]: return 0 @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def add_tokens(self, new_tokens, special_tokens: bool = False): for token in new_tokens: token_id = self.convert_tokens_to_ids(token) self.added_tokens_decoder[token_id] = token def convert_ids_to_tokens(self, ids, skip_special_tokens=False): if isinstance(ids, int): ids = [ids] tokens = [] for id_ in ids: if id_ in self.added_tokens_decoder: tokens.append(self.added_tokens_decoder[id_]) else: tokens.append(self._convert_id_to_token(id_)) return tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): if self.add_bos_token: bos_token_ids = [self.bos_token_id] else: bos_token_ids = [] output = bos_token_ids + token_ids_0 if token_ids_1 is None: return output return output + bos_token_ids + token_ids_1 def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if not self.add_bos_token: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) def encodeBytes(self, src: bytes): idx: int = 0 tokens = [] while idx < len(src): _idx: int = idx idx, _, values = self.trie.find_longest(src, idx) assert idx != _idx _, token = next(iter(values)) tokens.append(token) return tokens def decodeBytes(self, tokens): return b"".join(map(lambda i: self.encoder[i], tokens)) # noqa def _tokenize(self, text, **kwargs): """Tokenize a string.""" return self.encodeBytes(text.encode("utf-8")) def _decode_tokens(self, tokens): try: return self.decodeBytes(tokens).decode("utf-8") except Exception: return "\ufffd" # bad utf-8 def _decode( self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, **kwargs, ) -> str: def remove_zeros_from_first_segment(token_ids, first_max_length): first_segment = token_ids[:first_max_length] first_segment_cleaned = [token for token in first_segment if token != 0] return first_segment_cleaned + token_ids[first_max_length:] # Convert inputs to python lists token_ids = to_py_obj(token_ids) token_ids = remove_zeros_from_first_segment(token_ids, self.first_max_length) if isinstance(token_ids, int): if token_ids in self.all_special_ids and skip_special_tokens: return "" return self.encoder.get(token_ids, self.unk_token) elif isinstance(token_ids, list): self.first_max_length out_str = "" out_last = 0 out_tokens = [] for i, token in enumerate(token_ids): if token == 0: break out_tokens += [token] tmp = self._decode_tokens(out_tokens[out_last:]) if "\ufffd" not in tmp: out_str += tmp out_last = i + 1 return out_str else: return token_ids def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.exists(save_directory): os.mkdir(save_directory) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: for idx, x in self.encoder.items(): if isinstance(x, str): x = x.decode("utf-8") line = f"{idx} {repr(x)} {len(x)}\n" f.write(line) return (vocab_file,) def prepare_for_tokenization(self, text, **kwargs): return (text, kwargs) def _get_padding_truncation_strategies( self, padding=False, truncation=None, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs ): return PaddingStrategy.LONGEST, TruncationStrategy.DO_NOT_TRUNCATE, -1, kwargs def _encode_plus( self, text: Union[TextInput, EncodedInput], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: def get_input_ids(text, max_length=None, pad_token_id=0): def pad_sequence(seq, max_len, pad_tok): return [pad_tok] * (max_len - len(seq)) + seq if isinstance(text, str): tokens = self._tokenize(text) if max_length is not None: tokens = pad_sequence(tokens, max_length, pad_token_id) return tokens elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str): tokenized_texts = [self._tokenize(t) for t in text] if max_length is None: max_length = max(len(t) for t in tokenized_texts) return [pad_sequence(t, max_length, pad_token_id) for t in tokenized_texts] elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): if max_length is not None and len(text) < max_length: return pad_sequence(text, max_length, pad_token_id) return text else: raise ValueError( "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." ) if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) first_ids = get_input_ids(text) return self.prepare_for_model( first_ids, pair_ids=None, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[EncodedInput], ], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: def get_input_ids(text, max_length=None, pad_token_id=0): def pad_sequence(seq, max_len, pad_tok): return [pad_tok] * (max_len - len(seq)) + seq if isinstance(text, str): tokens = self._tokenize(text) if max_length is not None: tokens = pad_sequence(tokens, max_length, pad_token_id) return tokens elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str): tokenized_texts = [self._tokenize(t) for t in text] if max_length is None: max_length = max(len(t) for t in tokenized_texts) return [pad_sequence(t, max_length, pad_token_id) for t in tokenized_texts] elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): if max_length is not None and len(text) < max_length: return pad_sequence(text, max_length, pad_token_id) return text else: raise ValueError( "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." ) if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) first_max_length = 0 second_max_length = 0 for ids_or_pair_ids in batch_text_or_text_pairs: if not isinstance(ids_or_pair_ids, (list, tuple)): ids, pair_ids = ids_or_pair_ids, None else: ids, pair_ids = ids_or_pair_ids first_ids = get_input_ids(ids) second_ids = get_input_ids(pair_ids) if pair_ids is not None else None first_max_length = max(first_max_length, len(first_ids)) if second_ids is not None: second_max_length = max(second_max_length, len(second_ids)) self.first_max_length = first_max_length input_ids = [] for ids_or_pair_ids in batch_text_or_text_pairs: if not isinstance(ids_or_pair_ids, (list, tuple)): ids, pair_ids = ids_or_pair_ids, None else: ids, pair_ids = ids_or_pair_ids first_ids = get_input_ids(ids, max_length=first_max_length) second_ids = get_input_ids(pair_ids, max_length=second_max_length) if pair_ids is not None else None input_ids.append((first_ids, second_ids)) batch_outputs = self._batch_prepare_for_model( input_ids, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) def decode( self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces`. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ # Convert inputs to python lists return self._decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) def batch_decode( self, sequences: Union[List[int], List[List[int]]], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs, ) -> List[str]: """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces`. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `List[str]`: The list of decoded sentences. """ return [ self.decode( seq, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) for seq in sequences ] def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]: input_ids = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id]) if len(input_ids) > self.model_max_length: input_ids = input_ids[-self.model_max_length :] return input_ids