--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-kinetics-finetuned-ucf101-subset results: [] --- # videomae-base-finetuned-kinetics-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0126 - Accuracy: 0.9983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 972 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0193 | 0.25 | 243 | 0.0145 | 0.9983 | | 0.0016 | 1.25 | 486 | 0.0135 | 0.9983 | | 0.0011 | 2.25 | 729 | 0.0143 | 0.9983 | | 0.0009 | 3.25 | 972 | 0.0126 | 0.9983 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.2 - Datasets 3.1.0 - Tokenizers 0.20.3