--- license: mit datasets: - Skywork/Skywork-Reward-Preference-80K-v0.1 base_model: - Ray2333/GRM-llama3-8B-sftreg --- # Introduction This reward model is finetuned from the [Ray2333/GRM-llama3-8B-sftreg](https://huggingface.co/Ray2333/GRM-llama3-8B-sftreg) using the [Skywork preference dataset](https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.1). # Evaluation We evluated this reward model on reward-bench (https://huggingface.co/spaces/allenai/reward-bench) with an average score of 91.5. {'Chat': 0.9553072625698324, 'Chat Hard': 0.8618421052631579, 'Safety': 0.9116798876798876, 'Reasoning': 0.9361529437442025} Check our GRM series at 🤗[hugging face](https://huggingface.co/collections/Ray2333/grm-66882bdf7152951779506c7b), our paper at [Arxiv](https://arxiv.org/abs/2406.10216), and github repo at [Github](https://github.com/YangRui2015/Generalizable-Reward-Model). **When evaluated using reward bench, please add '--not_quantized' to avoid performance drop.** | Model | Average | Chat | Chat Hard | Safety | Reasoning | |:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:| |[GRM_Llama3.1_8B_rewardmodel-ft](https://huggingface.co/Ray2333/GRM_Llama3.1_8B_rewardmodel-ft)**(8B)**| 92.6|95.0 |87.7|91.4|96.4| |[GRM-Llama3-8B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Llama3-8B-rewardmodel-ft)**(8B)**|91.5|95.5|86.2|90.8|93.6| |[GRM-Llama3.2-3B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Llama3.2-3B-rewardmodel-ft)**(ours, 3B)**|90.9|91.6|84.9|92.7|94.6| | [GRM-gemma2-2B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-gemma2-2B-rewardmodel-ft) **(Ours, 2B)**| 88.4 | 93.0 | 77.2 | 92.2 | 91.2 | | google/gemini-1.5-pro-0514 | 88.2 | 92.3 | 80.6 | 87.9 |92.0 | |RLHFlow/pair-preference-model-LLaMA3-8B |87.1 | 98.3 | 65.8|89.7|94.7| |[GRM-llama3-8B-sftreg](https://huggingface.co/Ray2333/GRM-llama3-8B-sftreg)**(ours, 8B)**|87.0|98.6|67.8|89.2|92.3| |google/gemini-1.5-pro-0924 | 86.8 | 94.1|77.0|85.8 |90.2| |openai/gpt-4o-2024-08-06 | 86.7 | 96.1 | 76.1 | 88.1 | 86.6| |[GRM-llama3.2-3B-sftreg](https://huggingface.co/Ray2333/GRM-llama3.2-3B-sftreg)**(ours, 3B)**|85.8|96.4|67.1|88.2|91.6| |[GRM-Gemma-2B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft) **(Ours, 2B)**| 84.7 | 89.4 | 75.2 | 85.5 | 88.8 | | openai/gpt-4o-2024-05-13 | 84.6| 96.6 | 70.4 | 86.5 | 84.9 | | sfairXC/FsfairX-LLaMA3-RM-v0.1 (8B) | 84.4 | 99.4 | 65.1 | 86.8 | 86.4 | | Nexusflow/Starling-RM-34B | 82.6 |96.9 |57.2 |87.7 |88.5| | [GRM-Gemma2-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma2-2B-sftreg)**(Ours, 2B)** | 81.0 | 97.2 | 59.6 | 86.9 | 80.3 | | [GRM-Gemma-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma-2B-sftreg)**(Ours, 2B)** | 75.3 | 95.5 | 48.7 | 80.0 | 76.8 | | berkeley-nest/Starling-RM-7B-alpha (7B) | 74.6 | 98 | 43.4 | 88.6 | 74.6 | | [Gemma-2B-rewardmodel-baseline](https://huggingface.co/Ray2333/Gemma-2B-rewardmodel-baseline)**(Ours, 2B)** | 73.7 | 94.1 | 46.1 | 79.6 | 75.0 | | openbmb/UltraRM-13b (13B) | 71.3 | 96.1 | 55.3 | 45.8 | 82 | ## Usage ``` import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification device = 'cuda:0' # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained('Ray2333/GRM-Llama3-8B-rewardmodel-ft') reward_model = AutoModelForSequenceClassification.from_pretrained( 'Ray2333/GRM-Llama3-8B-rewardmodel-ft', torch_dtype=torch.float16, device_map=device, ) message = [ {'role': 'user', 'content': "I'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?"}, {'role': 'assistant', 'content': "Sorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?"} ] message_template = tokenizer.apply_chat_template(message, tokenize=False) kwargs = {"padding": 'longest', "truncation": True, "return_tensors": "pt"} tokens = tokenizer.encode_plus(message_template, **kwargs) with torch.no_grad(): reward_tensor = reward_model(tokens["input_ids"][0].view(1,-1).to(device), attention_mask=tokens["attention_mask"][0].view(1,-1).to(device))[0] reward = reward_tensor.cpu().detach().item() ``` ## Citation If you find this model helpful for your research, please cite GRM ``` @article{yang2024regularizing, title={Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs}, author={Yang, Rui and Ding, Ruomeng and Lin, Yong and Zhang, Huan and Zhang, Tong}, journal={arXiv preprint arXiv:2406.10216}, year={2024} } ```