Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Kitsunebi-v1-Gemma2-8k-9B - GGUF - Model creator: https://huggingface.co/grimjim/ - Original model: https://huggingface.co/grimjim/Kitsunebi-v1-Gemma2-8k-9B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Kitsunebi-v1-Gemma2-8k-9B.Q2_K.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q2_K.gguf) | Q2_K | 3.54GB | | [Kitsunebi-v1-Gemma2-8k-9B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.IQ3_XS.gguf) | IQ3_XS | 3.86GB | | [Kitsunebi-v1-Gemma2-8k-9B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.IQ3_S.gguf) | IQ3_S | 4.04GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q3_K_S.gguf) | Q3_K_S | 4.04GB | | [Kitsunebi-v1-Gemma2-8k-9B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.IQ3_M.gguf) | IQ3_M | 4.19GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q3_K.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q3_K.gguf) | Q3_K | 4.43GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q3_K_M.gguf) | Q3_K_M | 4.43GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q3_K_L.gguf) | Q3_K_L | 4.78GB | | [Kitsunebi-v1-Gemma2-8k-9B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.IQ4_XS.gguf) | IQ4_XS | 4.86GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q4_0.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q4_0.gguf) | Q4_0 | 5.07GB | | [Kitsunebi-v1-Gemma2-8k-9B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.IQ4_NL.gguf) | IQ4_NL | 5.1GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q4_K_S.gguf) | Q4_K_S | 5.1GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q4_K.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q4_K.gguf) | Q4_K | 5.37GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q4_K_M.gguf) | Q4_K_M | 5.37GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q4_1.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q4_1.gguf) | Q4_1 | 5.55GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q5_0.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q5_0.gguf) | Q5_0 | 6.04GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q5_K_S.gguf) | Q5_K_S | 6.04GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q5_K.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q5_K.gguf) | Q5_K | 6.19GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q5_K_M.gguf) | Q5_K_M | 6.19GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q5_1.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q5_1.gguf) | Q5_1 | 6.52GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q6_K.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q6_K.gguf) | Q6_K | 7.07GB | | [Kitsunebi-v1-Gemma2-8k-9B.Q8_0.gguf](https://huggingface.co/RichardErkhov/grimjim_-_Kitsunebi-v1-Gemma2-8k-9B-gguf/blob/main/Kitsunebi-v1-Gemma2-8k-9B.Q8_0.gguf) | Q8_0 | 9.15GB | Original model description: --- base_model: - princeton-nlp/gemma-2-9b-it-SimPO - HODACHI/EZO-Common-9B-gemma-2-it library_name: transformers tags: - mergekit - merge license: gemma pipeline_tag: text-generation --- # Kitsunebi-v1-Gemma2-8k-9B This repo contains a merge of pre-trained Gemma 2 9B Instruct language models created using [mergekit](https://github.com/cg123/mergekit). None of the components of this merge were trained for roleplay nor intended for it. Despite this, the resulting model can be used effectively for that function. The virtue of this model lies in its coherence, as opposed to textual richness. This project utilizes HODACHI/EZO-Common-9B-gemma-2-it, a model based on gemma-2 and fine-tuned by Axcxept co., ltd. Its primary goal was to perform well in Japanese language tasks. Model training leveraged context-based synthesized instruction pre-training data for supervised multitask pre-training [(abstract)](https://arxiv.org/abs/2406.14491). We also used princeton-nlp/gemma-2-9b-it-SimPO, a demonstration of Simple Preference Optimization [(abstract)](https://arxiv.org/abs/2405.14734). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) * [HODACHI/EZO-Common-9B-gemma-2-it](https://huggingface.co/HODACHI/EZO-Common-9B-gemma-2-it) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: princeton-nlp/gemma-2-9b-it-SimPO layer_range: [0, 42] - model: HODACHI/EZO-Common-9B-gemma-2-it layer_range: [0, 42] merge_method: slerp base_model: HODACHI/EZO-Common-9B-gemma-2-it parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```