--- library_name: transformers license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-dmae-humeda-DAV24 results: [] --- # swinv2-tiny-patch4-window8-256-dmae-humeda-DAV24 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8851 - Accuracy: 0.7059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 6.5614 | 1.0 | 17 | 1.6096 | 0.3176 | | 6.1279 | 2.0 | 34 | 1.5651 | 0.3176 | | 5.5089 | 3.0 | 51 | 1.3188 | 0.5529 | | 4.453 | 4.0 | 68 | 1.0195 | 0.6353 | | 3.3808 | 5.0 | 85 | 0.9741 | 0.5882 | | 2.7707 | 6.0 | 102 | 0.8365 | 0.6353 | | 2.3091 | 7.0 | 119 | 0.7725 | 0.6588 | | 1.9831 | 8.0 | 136 | 0.8312 | 0.6588 | | 1.8284 | 9.0 | 153 | 0.8473 | 0.7059 | | 1.511 | 10.0 | 170 | 0.7539 | 0.7176 | | 1.2827 | 11.0 | 187 | 0.8067 | 0.7176 | | 1.2072 | 12.0 | 204 | 0.7927 | 0.7176 | | 1.2069 | 13.0 | 221 | 0.8184 | 0.6824 | | 0.9242 | 14.0 | 238 | 0.8548 | 0.7059 | | 0.9772 | 15.0 | 255 | 0.8374 | 0.7294 | | 0.8412 | 16.0 | 272 | 0.8340 | 0.7176 | | 0.8921 | 17.0 | 289 | 0.8729 | 0.6941 | | 0.7975 | 18.0 | 306 | 0.9115 | 0.7059 | | 0.8107 | 19.0 | 323 | 0.8830 | 0.6941 | | 0.7131 | 20.0 | 340 | 0.9049 | 0.6941 | | 0.6777 | 21.0 | 357 | 0.8895 | 0.7059 | | 0.6557 | 22.0 | 374 | 0.8831 | 0.7059 | | 0.6555 | 23.0 | 391 | 0.8846 | 0.7059 | | 0.7766 | 23.5455 | 400 | 0.8851 | 0.7059 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0