--- license: apache-2.0 base_model: facebook/wav2vec2-lv-60-espeak-cv-ft tags: - generated_from_trainer datasets: - voxpopuli metrics: - wer model-index: - name: cs2fi-wav2vec2-large-xls-r-300m-cs-colab-phoneme results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: voxpopuli type: voxpopuli config: fi split: test args: fi metrics: - name: Wer type: wer value: 0.5253440751930178 --- # cs2fi-wav2vec2-large-xls-r-300m-cs-colab-phoneme This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 2.2508 - Wer: 0.5253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8061 | 16.67 | 100 | 2.7437 | 0.5693 | | 2.871 | 33.33 | 200 | 2.4209 | 0.5314 | | 2.525 | 50.0 | 300 | 2.2508 | 0.5253 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0