--- license: apache-2.0 base_model: facebook/wav2vec2-lv-60-espeak-cv-ft tags: - generated_from_trainer datasets: - voxpopuli metrics: - wer model-index: - name: cs2fi_wav2vec2-large-xls-r-300m-czech-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: voxpopuli type: voxpopuli config: fi split: test args: fi metrics: - name: Wer type: wer value: 1.1551362683438156 --- # cs2fi_wav2vec2-large-xls-r-300m-czech-colab This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 464.4552 - Wer: 1.1551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 934.7989 | 14.04 | 400 | 248.4365 | 0.8700 | | 123.7719 | 28.07 | 800 | 352.9212 | 1.0063 | | 63.0159 | 42.11 | 1200 | 464.4552 | 1.1551 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0