--- license: apache-2.0 base_model: facebook/wav2vec2-lv-60-espeak-cv-ft tags: - generated_from_trainer datasets: - nb_samtale metrics: - wer model-index: - name: cs2no_wav2vec2-large-xls-r-300m-czech-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: nb_samtale type: nb_samtale config: annotations split: test args: annotations metrics: - name: Wer type: wer value: 0.8457142857142858 --- # cs2no_wav2vec2-large-xls-r-300m-czech-colab This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the nb_samtale dataset. It achieves the following results on the evaluation set: - Loss: 396.8153 - Wer: 0.8457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3026.3663 | 3.51 | 100 | 472.1026 | 0.9873 | | 336.2439 | 7.02 | 200 | 239.3806 | 0.9987 | | 208.6184 | 10.53 | 300 | 206.7293 | 0.9917 | | 182.6556 | 14.04 | 400 | 221.5585 | 0.8908 | | 174.3151 | 17.54 | 500 | 262.3953 | 0.8921 | | 140.57 | 21.05 | 600 | 225.9887 | 0.8330 | | 114.5967 | 24.56 | 700 | 275.7823 | 0.8495 | | 91.2748 | 28.07 | 800 | 314.0284 | 0.8610 | | 80.0496 | 31.58 | 900 | 314.4608 | 0.8552 | | 66.7338 | 35.09 | 1000 | 326.7965 | 0.8527 | | 56.921 | 38.6 | 1100 | 373.0237 | 0.8425 | | 50.7125 | 42.11 | 1200 | 374.9553 | 0.8527 | | 47.4235 | 45.61 | 1300 | 404.8124 | 0.8489 | | 45.1623 | 49.12 | 1400 | 396.8153 | 0.8457 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0