--- license: apache-2.0 base_model: facebook/wav2vec2-lv-60-espeak-cv-ft tags: - generated_from_trainer datasets: - voxpopuli metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-czech-colab-finetuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: voxpopuli type: voxpopuli config: cs split: test args: cs metrics: - name: Wer type: wer value: 0.6178421298458664 --- # wav2vec2-large-xls-r-300m-czech-colab-finetuned This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 624.5939 - Wer: 0.6178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3007.3212 | 3.51 | 100 | 1006.7374 | 0.9865 | | 354.3011 | 7.02 | 200 | 563.6080 | 0.9980 | | 211.5289 | 10.53 | 300 | 599.5796 | 0.9165 | | 187.8653 | 14.04 | 400 | 447.1478 | 0.8099 | | 163.1056 | 17.54 | 500 | 430.5204 | 0.6875 | | 143.0342 | 21.05 | 600 | 413.8947 | 0.6850 | | 116.0388 | 24.56 | 700 | 435.5743 | 0.6737 | | 95.5554 | 28.07 | 800 | 490.6329 | 0.6339 | | 80.6966 | 31.58 | 900 | 493.9658 | 0.6344 | | 68.7335 | 35.09 | 1000 | 525.7507 | 0.6263 | | 58.3269 | 38.6 | 1100 | 582.5747 | 0.6128 | | 54.3181 | 42.11 | 1200 | 600.8087 | 0.6308 | | 48.5287 | 45.61 | 1300 | 594.6959 | 0.6112 | | 43.041 | 49.12 | 1400 | 624.5939 | 0.6178 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0