--- license: mit base_model: microsoft/MiniLM-L12-H384-uncased tags: - Language - image-Emotion - miniLM - PyTorch - Trainer - SequenceClassification - WeightedLoss - CrossEntropyLoss - F1Score - HuggingFaceHub - generated_from_trainer datasets: - emotion metrics: - f1 model-index: - name: miniLM_finetuned_Emotion_2024_06_15 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: F1 type: f1 value: 0.9205262112499766 --- # miniLM_finetuned_Emotion_2024_06_15 This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3634 - F1: 0.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.367 | 1.0 | 250 | 1.0076 | 0.5959 | | 0.8543 | 2.0 | 500 | 0.6459 | 0.8558 | | 0.5709 | 3.0 | 750 | 0.4652 | 0.9057 | | 0.43 | 4.0 | 1000 | 0.3902 | 0.9161 | | 0.3763 | 5.0 | 1250 | 0.3634 | 0.9205 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1