--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer base_model: openai/whisper-tiny model-index: - name: whisper-tiny-finetuned-minds14 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: MINDS14 type: PolyAI/minds14 metrics: - type: wer value: 0.34993849938499383 name: Wer --- # whisper-tiny-finetuned-minds14 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the MINDS14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6435 - Wer Ortho: 0.3797 - Wer: 0.3499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 4.995 | 1.0 | 29 | 2.9879 | 0.5425 | 0.4127 | | 2.1634 | 2.0 | 58 | 0.8084 | 0.4382 | 0.3936 | | 0.6659 | 3.0 | 87 | 0.6268 | 0.4144 | 0.3678 | | 0.3865 | 4.0 | 116 | 0.5987 | 0.3880 | 0.3561 | | 0.2428 | 5.0 | 145 | 0.6005 | 0.3990 | 0.3659 | | 0.1734 | 6.0 | 174 | 0.6162 | 0.3906 | 0.3573 | | 0.0965 | 7.0 | 203 | 0.6221 | 0.3893 | 0.3561 | | 0.0682 | 8.0 | 232 | 0.6320 | 0.3803 | 0.3493 | | 0.0473 | 9.0 | 261 | 0.6411 | 0.3797 | 0.3493 | | 0.0476 | 10.0 | 290 | 0.6435 | 0.3797 | 0.3499 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3