--- license: mit tags: - generated_from_trainer metrics: - accuracy base_model: microsoft/deberta-v3-large model-index: - name: deberta-v3-large__sst2__train-16-2 results: [] --- # deberta-v3-large__sst2__train-16-2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6959 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7079 | 1.0 | 7 | 0.7361 | 0.2857 | | 0.6815 | 2.0 | 14 | 0.7659 | 0.2857 | | 0.6938 | 3.0 | 21 | 0.7944 | 0.2857 | | 0.4584 | 4.0 | 28 | 1.2441 | 0.2857 | | 0.4949 | 5.0 | 35 | 1.2285 | 0.5714 | | 0.0574 | 6.0 | 42 | 1.7796 | 0.5714 | | 0.0156 | 7.0 | 49 | 2.6027 | 0.5714 | | 0.0051 | 8.0 | 56 | 2.8717 | 0.5714 | | 0.0017 | 9.0 | 63 | 2.8491 | 0.5714 | | 0.0023 | 10.0 | 70 | 1.7149 | 0.7143 | | 0.001 | 11.0 | 77 | 1.1101 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3