--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: SeyedAli/Musical-genres-Classification-Hubert-V1 results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- # SeyedAli/Musical-genres-Classification-Hubert-V1 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5068 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0025 | 1.0 | 113 | 1.8276 | 0.57 | | 1.3273 | 2.0 | 226 | 1.2564 | 0.64 | | 0.9558 | 3.0 | 339 | 0.9493 | 0.76 | | 0.8668 | 4.0 | 452 | 0.7986 | 0.76 | | 0.8293 | 5.0 | 565 | 0.6570 | 0.8 | | 0.3777 | 6.0 | 678 | 0.6068 | 0.78 | | 0.4111 | 7.0 | 791 | 0.4885 | 0.84 | | 0.1512 | 8.0 | 904 | 0.5045 | 0.8 | | 0.3596 | 9.0 | 1017 | 0.4681 | 0.85 | | 0.088 | 10.0 | 1130 | 0.5068 | 0.84 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3