--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERT_MC_OpenBookQA_w_wrong_context results: [] --- # BERT_MC_OpenBookQA_w_wrong_context This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7450 - Accuracy: 0.922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3525 | 1.0 | 1859 | 0.2696 | 0.906 | | 0.2084 | 2.0 | 3718 | 0.3284 | 0.9143 | | 0.1263 | 3.0 | 5577 | 0.4205 | 0.9143 | | 0.0734 | 4.0 | 7436 | 0.4688 | 0.9203 | | 0.0437 | 5.0 | 9295 | 0.6266 | 0.9173 | | 0.0357 | 6.0 | 11154 | 0.6934 | 0.9207 | | 0.0264 | 7.0 | 13013 | 0.6947 | 0.92 | | 0.0098 | 8.0 | 14872 | 0.6800 | 0.9197 | | 0.0104 | 9.0 | 16731 | 0.7393 | 0.923 | | 0.0067 | 10.0 | 18590 | 0.7846 | 0.9217 | | 0.0034 | 11.0 | 20449 | 0.7450 | 0.922 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0