--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en library_name: diffusers pipeline_tag: text-to-image tags: - Text-to-Image - ControlNet - Diffusers - Flux.1-dev - image-generation - Stable Diffusion base_model: black-forest-labs/FLUX.1-dev --- # FLUX.1-dev-ControlNet-Union-Pro This repository contains a unified ControlNet for FLUX.1-dev model jointly released by researchers from [InstantX Team](https://huggingface.co/InstantX) and [Shakker Labs](https://huggingface.co/Shakker-Labs).
# Model Cards - This checkpoint is a Pro version of [FLUX.1-dev-Controlnet-Union](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union) trained with more steps and datasets. - This model supports 7 control modes, including canny (0), tile (1), depth (2), blur (3), pose (4), gray (5), low quality (6). - The recommended controlnet_conditioning_scale is 0.3-0.8. - This model can be jointly used with other ControlNets. # Showcases
# Inference Please install `diffusers` from [the source](https://github.com/huggingface/diffusers), as [the PR](https://github.com/huggingface/diffusers/pull/9175) has not been included in currently released version yet. # Multi-Controls Inference ```python import torch from diffusers.utils import load_image from diffusers import FluxControlNetPipeline, FluxControlNetModel from diffusers.models import FluxMultiControlNetModel base_model = 'black-forest-labs/FLUX.1-dev' controlnet_model_union = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro' controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union, torch_dtype=torch.bfloat16) controlnet = FluxMultiControlNetModel([controlnet_union]) # we always recommend loading via FluxMultiControlNetModel pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) pipe.to("cuda") prompt = 'A bohemian-style female travel blogger with sun-kissed skin and messy beach waves.' control_image_depth = load_image("https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro/resolve/main/assets/depth.jpg") control_mode_depth = 2 control_image_canny = load_image("https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro/resolve/main/assets/canny.jpg") control_mode_canny = 0 width, height = control_image_depth.size image = pipe( prompt, control_image=[control_image_depth, control_image_canny], control_mode=[control_mode_depth, control_mode_canny], width=width, height=height, controlnet_conditioning_scale=[0.2, 0.4], num_inference_steps=24, guidance_scale=3.5, generator=torch.manual_seed(42), ).images[0] ``` We also support loading multiple ControlNets as before, you can load as ```python from diffusers import FluxControlNetModel from diffusers.models import FluxMultiControlNetModel controlnet_model_union = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro' controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union, torch_dtype=torch.bfloat16) controlnet_model_depth = 'Shakker-Labs/FLUX.1-dev-Controlnet-Depth' controlnet_depth = FluxControlNetModel.from_pretrained(controlnet_model_depth, torch_dtype=torch.bfloat16) controlnet = FluxMultiControlNetModel([controlnet_union, controlnet_depth]) # set mode to None for other ControlNets control_mode=[2, None] ``` # Resources - [InstantX/FLUX.1-dev-Controlnet-Canny](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny) - [Shakker-Labs/FLUX.1-dev-ControlNet-Depth](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Depth) - [Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro) # Acknowledgements This project is trained by [InstantX Team](https://huggingface.co/InstantX) and sponsored by [Shakker AI](https://www.shakker.ai/). The original idea is inspired by [xinsir/controlnet-union-sdxl-1.0](https://huggingface.co/xinsir/controlnet-union-sdxl-1.0). All copyright reserved.