--- library_name: transformers license: mit base_model: google/vivit-b-16x2-kinetics400 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ViViT_WLASL_100_SR_4_ep200_p20 results: [] --- # ViViT_WLASL_100_SR_4_ep200_p20 This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7950 - Accuracy: 0.6272 - Precision: 0.6755 - Recall: 0.6272 - F1: 0.6047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 36000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 18.9788 | 0.005 | 180 | 4.6909 | 0.0266 | 0.0055 | 0.0266 | 0.0082 | | 18.6803 | 1.0050 | 360 | 4.6180 | 0.0266 | 0.0034 | 0.0266 | 0.0058 | | 18.0341 | 2.0050 | 540 | 4.5181 | 0.0473 | 0.0205 | 0.0473 | 0.0238 | | 17.0617 | 3.0050 | 721 | 4.3376 | 0.0740 | 0.0541 | 0.0740 | 0.0478 | | 15.6302 | 4.005 | 901 | 4.0709 | 0.1183 | 0.0772 | 0.1183 | 0.0815 | | 14.0851 | 5.0050 | 1081 | 3.7552 | 0.1864 | 0.1536 | 0.1864 | 0.1449 | | 11.953 | 6.0050 | 1261 | 3.4065 | 0.2663 | 0.2643 | 0.2663 | 0.2221 | | 9.8223 | 7.0050 | 1442 | 3.1038 | 0.3373 | 0.3284 | 0.3373 | 0.2944 | | 7.8126 | 8.005 | 1622 | 2.7834 | 0.4142 | 0.4201 | 0.4142 | 0.3676 | | 6.0952 | 9.0050 | 1802 | 2.5129 | 0.4763 | 0.4950 | 0.4763 | 0.4368 | | 4.3155 | 10.0050 | 1982 | 2.2757 | 0.5059 | 0.5594 | 0.5059 | 0.4894 | | 3.0214 | 11.0050 | 2163 | 2.0460 | 0.5473 | 0.5640 | 0.5473 | 0.5178 | | 2.0687 | 12.005 | 2343 | 1.8803 | 0.5917 | 0.6184 | 0.5917 | 0.5731 | | 1.3523 | 13.0050 | 2523 | 1.7261 | 0.5917 | 0.6065 | 0.5917 | 0.5601 | | 0.7828 | 14.0050 | 2703 | 1.6275 | 0.6036 | 0.6644 | 0.6036 | 0.5924 | | 0.4222 | 15.0050 | 2884 | 1.5284 | 0.6420 | 0.6756 | 0.6420 | 0.6245 | | 0.3113 | 16.005 | 3064 | 1.5459 | 0.6272 | 0.6664 | 0.6272 | 0.6092 | | 0.2021 | 17.0050 | 3244 | 1.4441 | 0.6657 | 0.6991 | 0.6657 | 0.6484 | | 0.1698 | 18.0050 | 3424 | 1.5340 | 0.6124 | 0.6511 | 0.6124 | 0.5942 | | 0.1199 | 19.0050 | 3605 | 1.3935 | 0.6509 | 0.6746 | 0.6509 | 0.6288 | | 0.0244 | 20.005 | 3785 | 1.4782 | 0.6686 | 0.7130 | 0.6686 | 0.6574 | | 0.0407 | 21.0050 | 3965 | 1.3890 | 0.6686 | 0.7149 | 0.6686 | 0.6557 | | 0.0719 | 22.0050 | 4145 | 1.4897 | 0.6598 | 0.7189 | 0.6598 | 0.6477 | | 0.1163 | 23.0050 | 4326 | 1.3919 | 0.6716 | 0.7218 | 0.6716 | 0.6639 | | 0.1167 | 24.005 | 4506 | 1.5690 | 0.6538 | 0.7189 | 0.6538 | 0.6380 | | 0.0366 | 25.0050 | 4686 | 1.5032 | 0.6746 | 0.6979 | 0.6746 | 0.6541 | | 0.1065 | 26.0050 | 4866 | 1.4893 | 0.6391 | 0.6475 | 0.6391 | 0.6135 | | 0.0454 | 27.0050 | 5047 | 1.5013 | 0.6243 | 0.6601 | 0.6243 | 0.6022 | | 0.0844 | 28.005 | 5227 | 1.5609 | 0.6598 | 0.6974 | 0.6598 | 0.6388 | | 0.109 | 29.0050 | 5407 | 1.4840 | 0.6657 | 0.7151 | 0.6657 | 0.6507 | | 0.1508 | 30.0050 | 5587 | 1.8017 | 0.6036 | 0.6784 | 0.6036 | 0.5903 | | 0.1114 | 31.0050 | 5768 | 1.6676 | 0.6391 | 0.6721 | 0.6391 | 0.6134 | | 0.0931 | 32.005 | 5948 | 1.5345 | 0.6746 | 0.7082 | 0.6746 | 0.6520 | | 0.0619 | 33.0050 | 6128 | 1.7462 | 0.6302 | 0.6424 | 0.6302 | 0.6008 | | 0.2698 | 34.0050 | 6308 | 1.7032 | 0.6331 | 0.6711 | 0.6331 | 0.6126 | | 0.1108 | 35.0050 | 6489 | 1.7695 | 0.6538 | 0.6784 | 0.6538 | 0.6265 | | 0.1006 | 36.005 | 6669 | 2.0188 | 0.5828 | 0.6289 | 0.5828 | 0.5661 | | 0.0823 | 37.0050 | 6849 | 1.6487 | 0.6568 | 0.6874 | 0.6568 | 0.6425 | | 0.0632 | 38.0050 | 7029 | 1.8014 | 0.6361 | 0.6917 | 0.6361 | 0.6253 | | 0.1162 | 39.0050 | 7210 | 1.6741 | 0.6450 | 0.6672 | 0.6450 | 0.6196 | | 0.0846 | 40.005 | 7390 | 1.8032 | 0.6361 | 0.6948 | 0.6361 | 0.6205 | | 0.1528 | 41.0050 | 7570 | 1.8375 | 0.6331 | 0.6732 | 0.6331 | 0.6102 | | 0.0695 | 42.0050 | 7750 | 1.6722 | 0.6568 | 0.7030 | 0.6568 | 0.6417 | | 0.1516 | 43.0050 | 7931 | 1.7811 | 0.6716 | 0.7009 | 0.6716 | 0.6495 | | 0.1565 | 44.005 | 8111 | 1.8077 | 0.6538 | 0.6884 | 0.6538 | 0.6347 | | 0.0728 | 45.0050 | 8291 | 1.7950 | 0.6272 | 0.6755 | 0.6272 | 0.6047 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.1