from typing import List, Optional, Tuple, Union from diffusers import DiffusionPipeline, ImagePipelineOutput from diffusers.utils.torch_utils import randn_tensor import torch class DDPMConditionalPipeline(DiffusionPipeline): model_cpu_offload_seq = "unet" def __init__(self, unet, scheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, label, batch_size: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, num_inference_steps: int = 1000, output_type: Optional[str] = "pil", return_dict: bool = True, ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.sample_size, int): image_shape = ( batch_size, self.unet.config.in_channels, self.unet.sample_size, self.unet.sample_size, ) else: image_shape = ( batch_size, self.unet.config.in_channels, *self.unet.sample_size, ) image = randn_tensor(image_shape, generator=generator) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(image, t, label).sample # 2. compute previous image: x_t -> x_t-1 image = self.scheduler.step( model_output, t, image, generator=generator ).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)