--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mbert-hate-final-1 results: [] --- # mbert-hate-final-1 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6751 - Accuracy: 0.7272 - Precision: 0.7260 - Recall: 0.7272 - F1: 0.7188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 296 | 0.5531 | 0.6835 | 0.6803 | 0.6835 | 0.6812 | | 0.5365 | 2.0 | 592 | 0.5304 | 0.7405 | 0.7432 | 0.7405 | 0.7302 | | 0.5365 | 3.0 | 888 | 0.5526 | 0.7310 | 0.7334 | 0.7310 | 0.7195 | | 0.4318 | 4.0 | 1184 | 0.6142 | 0.7186 | 0.7153 | 0.7186 | 0.7136 | | 0.4318 | 5.0 | 1480 | 0.6420 | 0.7243 | 0.7227 | 0.7243 | 0.7162 | | 0.3507 | 6.0 | 1776 | 0.6751 | 0.7272 | 0.7260 | 0.7272 | 0.7188 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1