--- license: mit base_model: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli tags: - generated_from_trainer metrics: - f1 - recall - accuracy - precision model-index: - name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-base-fine-tuned-text-classificarion-ds-ss results: [] --- # mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-base-fine-tuned-text-classificarion-ds-ss This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0473 - F1: 0.7427 - Recall: 0.7662 - Accuracy: 0.7662 - Precision: 0.7444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:|:---------:| | 3.4822 | 1.0 | 883 | 2.0495 | 0.3963 | 0.4790 | 0.4790 | 0.3791 | | 1.6347 | 2.0 | 1766 | 1.2672 | 0.6622 | 0.7030 | 0.7030 | 0.6535 | | 1.0807 | 3.0 | 2649 | 1.0711 | 0.7172 | 0.7420 | 0.7420 | 0.7065 | | 0.8958 | 4.0 | 3532 | 1.0654 | 0.7232 | 0.7489 | 0.7489 | 0.7218 | | 0.7766 | 5.0 | 4415 | 1.0473 | 0.7427 | 0.7662 | 0.7662 | 0.7444 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3