--- base_model: upaya07/Arithmo2-Mistral-7B datasets: - akjindal53244/Arithmo-Data language: - en license: mit tags: - Mathematical Reasoning - llama-cpp - gguf-my-repo --- # Srinath991/Arithmo2-Mistral-7B-Q5_K_M-GGUF This model was converted to GGUF format from [`upaya07/Arithmo2-Mistral-7B`](https://huggingface.co/upaya07/Arithmo2-Mistral-7B) using llama.cpp Refer to the [original model card](https://huggingface.co/upaya07/Arithmo2-Mistral-7B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Srinath991/Arithmo2-Mistral-7B-Q5_K_M-GGUF --hf-file arithmo2-mistral-7b-q5_k_m.gguf -p "What is the GCD of 10,007 & 11,149" ``` ### Server: ```bash llama-server --hf-repo Srinath991/Arithmo2-Mistral-7B-Q5_K_M-GGUF --hf-file arithmo2-mistral-7b-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Srinath991/Arithmo2-Mistral-7B-Q5_K_M-GGUF --hf-file arithmo2-mistral-7b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Srinath991/Arithmo2-Mistral-7B-Q5_K_M-GGUF --hf-file arithmo2-mistral-7b-q5_k_m.gguf -c 2048 ```