--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Small en - Stan results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: google/fleurs config: en_us split: None args: 'config: en, split: test' metrics: - name: Wer type: wer value: 8.637757947573899 --- # Whisper Small en - Stan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.3236 - Wer: 8.6378 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5755 | 0.61 | 100 | 0.5716 | 8.6029 | | 0.1769 | 1.23 | 200 | 0.2722 | 8.3659 | | 0.1153 | 1.84 | 300 | 0.2791 | 8.7842 | | 0.0356 | 2.45 | 400 | 0.2852 | 8.7981 | | 0.0208 | 3.07 | 500 | 0.2923 | 8.6866 | | 0.0105 | 3.68 | 600 | 0.3050 | 8.6517 | | 0.0032 | 4.29 | 700 | 0.3126 | 8.6238 | | 0.0033 | 4.91 | 800 | 0.3174 | 8.6308 | | 0.0028 | 5.52 | 900 | 0.3227 | 8.5611 | | 0.0017 | 6.13 | 1000 | 0.3236 | 8.6378 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2