--- library_name: transformers tags: - robotics - vla - image-text-to-text - multimodal - pretraining license: mit language: - en pipeline_tag: image-text-to-text --- # MiniVLA Image History (T=2) VQ 1B (Prismatic-Compatible Version) This checkpoint is in a format that is compatible with the training script from the original [Prismatic VLMs project codebase](https://github.com/TRI-ML/prismatic-vlms), which the OpenVLA team built on top of to develop the OpenVLA model. This Prismatic-compatible checkpoint may be useful if you wish to fully fine-tune MiniVLA (all 1 billion parameters) via native PyTorch Fully Sharded Data Parallel (FSDP) using the Prismatic VLMs training script. If you instead wish to do Parameter-Efficient Fine-Tuning via LoRA, you can use the MiniVLA checkpoint linked above, which is compatible with the Hugging Face `transformers` library. We recommend fine-tuning via LoRA if you do not have sufficient compute to fully fine-tune a 1B-parameter model (e.g., multiple A100/H100 GPUs). ## Usage Instructions See the [MiniVLA GitHub README](https://github.com/Stanford-ILIAD/openvla-mini/blob/main/README.md) for instructions on how to use this checkpoint for full fine-tuning. ## Citation **BibTeX:** ```bibtex @article{kim24openvla, title={MiniVLA: A Better VLA with a Smaller Footprint}, author={Suneel Belkhale and Dorsa Sadigh}, url={https://github.com/Stanford-ILIAD/openvla-mini} year={2024} } ```