--- license: apache-2.0 tags: - moe - merge - mergekit - Solar Moe - Solar - Umbra model-index: - name: Umbra-v2.1-MoE-4x10.7 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.11 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v2.1-MoE-4x10.7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.57 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v2.1-MoE-4x10.7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.48 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v2.1-MoE-4x10.7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 66.57 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v2.1-MoE-4x10.7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v2.1-MoE-4x10.7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.69 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v2.1-MoE-4x10.7 name: Open LLM Leaderboard --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/hen3fNHRD7BCPvd2KkfjZ.png) # Umbra-v2.1-MoE-4x10.7 The [Umbra Series] is an offshoot of the [Lumosia Series] With the goal to be a General assistant that has a knack for story telling and RP/ERP -What's New in v2.1? Umbra v2.1 isn't just a simple update; it's like giving the model a double shot of espresso. Ive changed the models and prompts, in an attempt to make Umbra not only your go-to assistant for general knowledge but also a great storyteller and RP/ERP companion. -Longer Positive, Shorter Negative In an effort to trick the gates into being less uptight, Ive added more positive prompts and snappier negative ones. These changes are based on the model's strengths and, frankly, my whimsical preferences. -Experimental, As Always Remember, folks, "v2.1" doesn't mean it's superior to its predecessors – it's just another step in the quest. It's the 'Empire Strikes Back' of our series – could be better, could be worse, but definitely more dramatic. -Base Context and Coherence Umbra v2.1 has a base context of 8k scrolling window. -The Tavern Card Just for fun - the Umbra Personality Tavern Card. It's your gateway to immersive storytelling experiences, a little like having a 'Choose Your Own Adventure' book, but way cooler because it's digital and doesn't get lost under your bed. -Token Error? Fixed! Umbra-v2 had a tokenizer error but was removed faster than you can say "Cops love Donuts" So, give Umbra v2.1 a whirl and let me know how it goes. Your feedback is like the secret sauce in my development burger. ``` ### System: ### USER:{prompt} ### Assistant: ``` Settings: ``` Temp: 1.0 min-p: 0.02-0.1 ``` ## Evals: * Avg: 73.59 * ARC: 69.11 * HellaSwag: 87.57 * MMLU: 66.48 * T-QA: 66.75 * Winogrande: 83.11 * GSM8K: 68.69 ## Examples: ``` posted soon ``` ``` posted soon ``` ## 🧩 Configuration ``` base_model: vicgalle/CarbonBeagle-11B gate_mode: hidden dtype: bfloat16 experts: - source_model: vicgalle/CarbonBeagle-11B positive_prompts: [Revamped] - source_model: Sao10K/Fimbulvetr-10.7B-v1 positive_prompts: [Revamped] - source_model: bn22/Nous-Hermes-2-SOLAR-10.7B-MISALIGNED positive_prompts: [Revamped] - source_model: Yhyu13/LMCocktail-10.7B-v1 positive_prompts: [Revamed] ``` ``` Umbra-v2-MoE-4x10.7 is a Mixure of Experts (MoE) made with the following models: * [vicgalle/CarbonBeagle-11B](https://huggingface.co/vicgalle/CarbonBeagle-11B) * [Sao10K/Fimbulvetr-10.7B-v1](https://huggingface.co/Sao10K/Fimbulvetr-10.7B-v1) * [bn22/Nous-Hermes-2-SOLAR-10.7B-MISALIGNED](https://huggingface.co/bn22/Nous-Hermes-2-SOLAR-10.7B-MISALIGNED) * [Yhyu13/LMCocktail-10.7B-v1](https://huggingface.co/Yhyu13/LMCocktail-10.7B-v1) ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Steelskull/Umbra-v2-MoE-4x10.7" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Steelskull__Umbra-v2.1-MoE-4x10.7) | Metric |Value| |---------------------------------|----:| |Avg. |73.59| |AI2 Reasoning Challenge (25-Shot)|69.11| |HellaSwag (10-Shot) |87.57| |MMLU (5-Shot) |66.48| |TruthfulQA (0-shot) |66.57| |Winogrande (5-shot) |83.11| |GSM8k (5-shot) |68.69|