""" ESM++ model implementation. ESM++ is a faithful implementation of ESMC that allows for batching and standard Huggingface compatibility The ESM Python package is not required Modified from https://github.com/evolutionaryscale/esm License: https://www.evolutionaryscale.ai/policies/cambrian-non-commercial-license-agreement """ import math import os import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass from functools import cache, partial from pathlib import Path from typing import Optional, Tuple, Union from einops import rearrange, repeat from huggingface_hub import snapshot_download from tokenizers import Tokenizer from tokenizers.models import BPE from tokenizers.processors import TemplateProcessing from torch.utils.data import Dataset, DataLoader from tqdm.auto import tqdm from transformers import PreTrainedModel, PreTrainedTokenizerFast, PretrainedConfig from transformers.modeling_outputs import ModelOutput class ESMplusplusConfig(PretrainedConfig): """Configuration class for ESM++ model. Args: vocab_size: Size of the vocabulary hidden_size: Dimension of hidden layers num_attention_heads: Number of attention heads num_hidden_layers: Number of transformer layers num_labels: Number of output labels for classification problem_type: Type of problem - regression, single/multi label classification """ model_type = "ESMplusplus" def __init__( self, vocab_size: int = 64, hidden_size: int = 960, num_attention_heads: int = 15, num_hidden_layers: int = 30, num_labels: int = 2, problem_type: str | None = None, dropout: float = 0.0, initializer_range: float = 0.02, **kwargs, ): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.num_labels = num_labels self.problem_type = problem_type self.dropout = dropout self.initializer_range = initializer_range ### Rotary Embeddings def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor: """Rotates half the hidden dims of the input.""" if not interleaved: x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) else: x1, x2 = x[..., ::2], x[..., 1::2] return rearrange( torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2 ) def apply_rotary_emb_torch( x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, interleaved: bool = False, _inplace: bool = False, ) -> torch.Tensor: """Apply rotary embeddings to input based on cos and sin.""" ro_dim = cos.shape[-1] * 2 assert ro_dim <= x.shape[-1] seqlen = x.size(1) cos = cos[:seqlen] sin = sin[:seqlen] cos = repeat(cos, "s d -> s 1 (2 d)") sin = repeat(sin, "s d -> s 1 (2 d)") return torch.cat( [ x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:], ], dim=-1, ) class RotaryEmbedding(torch.nn.Module): """Rotary position embeddings. Based on the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding" Args: dim: Dimension of the embedding base: Base for computing angular frequencies interleaved: Whether to use interleaved rotations scale_base: Base for scaling scaling_factor: Factor for scaling positions pos_idx_in_fp32: Whether to compute position indices in fp32 device: Computation device """ def __init__( self, dim: int, base: float = 10000.0, interleaved: bool = False, scale_base: Optional[float] = None, scaling_factor: float = 1.0, pos_idx_in_fp32: bool = True, device: Optional[torch.device] = None, ): super().__init__() self.dim = dim self.base = float(base) self.pos_idx_in_fp32 = pos_idx_in_fp32 self.interleaved = interleaved self.scale_base = scale_base self.scaling_factor = scaling_factor self.device = device self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None self._cos_k_cached = None self._sin_k_cached = None self.reset_parameters() def reset_parameters(self): """Reset the parameters of the embedding.""" inv_freq = self._compute_inv_freq(self.device) self.register_buffer("inv_freq", inv_freq, persistent=False) arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32) scale = ( (arange + 0.4 * self.dim) / (1.4 * self.dim) if self.scale_base is not None else None ) self.register_buffer("scale", scale) def _compute_inv_freq(self, device: Optional[torch.device] = None) -> torch.Tensor: """Compute inverse frequency bands.""" return 1 / ( self.base ** ( torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim ) ) def _update_cos_sin_cache(self, seqlen: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None): """Update the cached cosine and sine values.""" if ( seqlen > self._seq_len_cached or self._cos_cached is None or self._cos_cached.device != device or self._cos_cached.dtype != dtype or (self.training and self._cos_cached.is_inference()) ): self._seq_len_cached = seqlen if self.pos_idx_in_fp32: t = torch.arange(seqlen, device=device, dtype=torch.float32) t /= self.scaling_factor if self.inv_freq.dtype != torch.float32: inv_freq = self.inv_freq.to(torch.float32) else: inv_freq = self.inv_freq else: t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) t /= self.scaling_factor inv_freq = self.inv_freq freqs = torch.outer(t, inv_freq) if self.scale is None: self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) else: power = ( torch.arange( seqlen, dtype=self.scale.dtype, device=self.scale.device ) - seqlen // 2 ) / self.scale_base scale = self.scale.to(device=power.device) ** power.unsqueeze(-1) self._cos_cached = (torch.cos(freqs) * scale).to(dtype) self._sin_cached = (torch.sin(freqs) * scale).to(dtype) self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Apply rotary embeddings to queries and keys. Args: q: Query tensor of shape (batch, seqlen, nheads, headdim) k: Key tensor of shape (batch, seqlen, nheads, headdim) Returns: Tuple of rotated query and key tensors """ self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype) assert self._cos_cached is not None assert self._sin_cached is not None if self.scale is None: return ( apply_rotary_emb_torch( q, self._cos_cached, self._sin_cached, self.interleaved, True, # inplace=True ), apply_rotary_emb_torch( k, self._cos_cached, self._sin_cached, self.interleaved, True, # inplace=True ), ) # type: ignore else: assert False ### Feedforward Network Components def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int: """Compute corrected dimension for SwiGLU.""" return int(((expansion_ratio * d_model) + 255) // 256 * 256) class SwiGLU(nn.Module): """SwiGLU activation function.""" def __init__(self): super(SwiGLU, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: x1, x2 = x.chunk(2, dim=-1) return F.silu(x1) * x2 def swiglu_ln_ffn(d_model: int, expansion_ratio: float) -> nn.Sequential: """Create SwiGLU feedforward network with layer normalization.""" return nn.Sequential( nn.LayerNorm(d_model), nn.Linear( d_model, swiglu_correction_fn(expansion_ratio, d_model) * 2, bias=False ), SwiGLU(), nn.Linear(swiglu_correction_fn(expansion_ratio, d_model), d_model, bias=False), ) ### Attention class MultiHeadAttention(nn.Module): """Multi-head attention with rotary embeddings. Args: d_model: Model dimension n_heads: Number of attention heads """ def __init__(self, d_model: int, n_heads: int): super().__init__() self.d_model = d_model self.n_heads = n_heads self.d_head = self.d_model // self.n_heads self.layernorm_qkv = nn.Sequential( nn.LayerNorm(d_model), nn.Linear(d_model, d_model * 3, bias=False) ) self.out_proj = nn.Linear(d_model, d_model, bias=False) self.q_ln = nn.LayerNorm(d_model, bias=False) self.k_ln = nn.LayerNorm(d_model, bias=False) self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads) self.rotary = RotaryEmbedding(d_model // n_heads) def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Apply rotary embeddings to query and key.""" q = q.unflatten(-1, (self.n_heads, self.d_head)) k = k.unflatten(-1, (self.n_heads, self.d_head)) q, k = self.rotary(q, k) q = q.flatten(-2, -1) k = k.flatten(-2, -1) return q, k def forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ Args: x: Input tensor attention_mask: Optional attention mask output_attentions: Whether to return attention weights Returns: Output tensor after self attention, and optionally attention weights """ attn_weights = None qkv_BLD3 = self.layernorm_qkv(x) query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1) query_BLD, key_BLD = ( self.q_ln(query_BLD).to(query_BLD.dtype), self.k_ln(key_BLD).to(query_BLD.dtype), ) query_BLD, key_BLD = self._apply_rotary(query_BLD, key_BLD) query_BHLD, key_BHLD, value_BHLD = map(self.reshaper, (query_BLD, key_BLD, value_BLD)) if output_attentions: # Manual attention computation L, S = query_BLD.size(-2), key_BLD.size(-2) scale = 1 / math.sqrt(query_BLD.size(-1)) attn_bias = torch.zeros(L, S, dtype=query_BLD.dtype, device=query_BLD.device) if attention_mask is not None: if attention_mask.dtype == torch.bool: attention_mask.masked_fill_(attention_mask.logical_not(), float('-inf')) else: attn_bias += attention_mask attn_weights = torch.matmul(query_BHLD, key_BHLD.transpose(-2, -1)) * scale attn_weights += attn_bias attn_weights = F.softmax(attn_weights, dim=-1) context_BHLD = torch.matmul(attn_weights, value_BHLD) else: context_BHLD = F.scaled_dot_product_attention( query_BHLD, key_BHLD, value_BHLD, attention_mask ) context_BLD = rearrange(context_BHLD, "b h s d -> b s (h d)") output = self.out_proj(context_BLD) return output, attn_weights ### Regression Head def RegressionHead(d_model: int, output_dim: int, hidden_dim: Optional[int] = None) -> nn.Module: """Create a regression head with optional hidden dimension. Args: d_model: Input dimension output_dim: Output dimension hidden_dim: Optional hidden dimension (defaults to d_model) """ hidden_dim = hidden_dim if hidden_dim is not None else d_model return nn.Sequential( nn.Linear(d_model, hidden_dim), nn.GELU(), nn.LayerNorm(hidden_dim), nn.Linear(hidden_dim, output_dim), ) ### Transformer Block class UnifiedTransformerBlock(nn.Module): """Transformer block with attention and feedforward layers. Args: d_model: Model dimension n_heads: Number of attention heads residue_scaling_factor: Factor for scaling residual connections expansion_ratio: Expansion ratio for feedforward network """ def __init__( self, d_model: int, n_heads: int, residue_scaling_factor: float = 1, expansion_ratio: float = 8 / 3, dropout: float = 0.0, ): super().__init__() self.attn = MultiHeadAttention(d_model, n_heads) self.ffn = swiglu_ln_ffn(d_model, expansion_ratio) self.scaling_factor = residue_scaling_factor self.dropout = nn.Dropout(dropout) def forward( self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ Args: x: Input tensor attention_mask: Optional attention mask output_attentions: Whether to return attention weights Returns: Output tensor after transformer block, and optionally attention weights """ attn_output, attn_weights = self.attn(x, attention_mask, output_attentions) x = x + self.dropout(attn_output) / self.scaling_factor x = x + self.dropout(self.ffn(x)) / self.scaling_factor return x, attn_weights ### Model Outputs @dataclass class TransformerOutput(ModelOutput): """Output type for transformer encoder.""" last_hidden_state: Optional[torch.Tensor] = None hidden_states: Optional[Tuple[torch.Tensor]] = None attentions: Optional[Tuple[torch.Tensor]] = None @dataclass class ESMplusplusOutput(ModelOutput): """Output type for ESM++ models.""" loss: Optional[torch.Tensor] = None logits: Optional[torch.Tensor] = None last_hidden_state: Optional[torch.Tensor] = None hidden_states: Optional[Tuple[torch.Tensor]] = None attentions: Optional[Tuple[torch.Tensor]] = None ### Transformer Stack class TransformerStack(nn.Module): """Stack of transformer blocks. Args: d_model: Model dimension n_heads: Number of attention heads n_layers: Number of transformer layers dropout: Dropout rate """ def __init__( self, d_model: int, n_heads: int, n_layers: int, dropout: float = 0.0, ): super().__init__() self.blocks = nn.ModuleList( [ UnifiedTransformerBlock( d_model, n_heads, residue_scaling_factor=math.sqrt(n_layers / 36), dropout=dropout, ) for i in range(n_layers) ] ) self.norm = nn.LayerNorm(d_model, bias=False) self.gradient_checkpointing = False def forward( self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_hidden_states: bool = False, output_attentions: bool = False, ) -> TransformerOutput: """ Args: x: Input tensor attention_mask: Optional attention mask output_hidden_states: Whether to return all hidden states output_attentions: Whether to return attention weights Returns: TransformerOutput containing last hidden state and optionally all hidden states and attention weights """ batch_size, seq_len, _ = x.shape hidden_states = () if output_hidden_states else None attentions = () if output_attentions else None if attention_mask is not None: attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool() for block in self.blocks: if self.gradient_checkpointing and self.training: x, attn_weights = self._gradient_checkpointing_func( block.__call__, x, attention_mask, output_attentions, ) else: x, attn_weights = block(x, attention_mask, output_attentions) if attentions is not None: attentions += (attn_weights,) if output_hidden_states: assert hidden_states is not None hidden_states += (x,) return TransformerOutput( last_hidden_state=self.norm(x), hidden_states=hidden_states, attentions=attentions ) ### Dataset for Embedding class ProteinDataset(Dataset): """Simple dataset for protein sequences.""" def __init__(self, sequences: list[str]): self.sequences = sequences def __len__(self) -> int: return len(self.sequences) def __getitem__(self, idx: int) -> str: return self.sequences[idx] class PreTrainedESMplusplusModel(PreTrainedModel): """ init weights for ESM++ models """ config_class = ESMplusplusConfig base_model_prefix = "esm++" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): if module.bias is not None: module.bias.data.zero_() module.weight.data.fill_(1.0) @classmethod def from_pretrained_esm(cls, model_name: str): """Load a pretrained ESM++ model.""" if '300' in model_name: return ESMplusplus_300M() elif '600' in model_name: return ESMplusplus_600M() else: raise ValueError(f"Invalid model name: {model_name}") @property def device(self) -> torch.device: """Get the device of the model.""" return next(self.parameters()).device def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: """Apply mean pooling to sequence outputs.""" if attention_mask is None: return x.mean(dim=1) else: attention_mask = attention_mask.unsqueeze(-1) return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1) def max_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: """Apply max pooling to sequence outputs.""" if attention_mask is None: return x.max(dim=1).values else: attention_mask = attention_mask.unsqueeze(-1) return (x * attention_mask).max(dim=1).values def cls_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: """Apply cls pooling to sequence outputs.""" return x[:, 0, :] def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]: """Collate function for batching sequences.""" return self.tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8) def _read_sequences_from_db(self, db_path: str) -> set[str]: """Read sequences from SQLite database.""" import sqlite3 sequences = [] with sqlite3.connect(db_path) as conn: c = conn.cursor() c.execute("SELECT sequence FROM embeddings") while True: row = c.fetchone() if row is None: break sequences.append(row[0]) return set(sequences) def embed_dataset( self, sequences: list[str], batch_size: int = 2, max_len: int = 512, full_embeddings: bool = False, full_precision: bool = False, pooling_type: str = 'mean', num_workers: int = 0, sql: bool = False, sql_db_path: str = 'embeddings.db', ) -> Optional[dict[str, torch.Tensor]]: """Embed a dataset of protein sequences. Args: sequences: List of protein sequences batch_size: Batch size for processing max_len: Maximum sequence length full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False) full_precision: Whether to cast to full precision (float32) before storage - relevant for dict storage pooling_type: Type of pooling ('mean' or 'cls') num_workers: Number of workers for data loading, 0 for the main process sql: Whether to store embeddings in SQLite database - will be stored in float32 sql_db_path: Path to SQLite database Returns: Dictionary mapping sequences to embeddings, or None if sql=True """ sequences = list(set([seq[:max_len] for seq in sequences])) device = self.device def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: if full_embeddings: return residue_embeddings elif pooling_type == 'mean': return self.mean_pooling(residue_embeddings, attention_mask) elif pooling_type == 'max': return self.max_pooling(residue_embeddings, attention_mask) elif pooling_type == 'cls': return self.cls_pooling(residue_embeddings, attention_mask) else: raise ValueError(f"Invalid pooling type: {pooling_type}") sequences = list(set([seq[:max_len] for seq in sequences])) if sql: import sqlite3 conn = sqlite3.connect(sql_db_path) c = conn.cursor() c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)') already_embedded = self._read_sequences_from_db(sql_db_path) to_embed = [seq for seq in sequences if seq not in already_embedded] print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}") print(f"Embedding {len(to_embed)} new sequences") if len(to_embed) > 0: to_embed = sorted(to_embed, key=len, reverse=True) dataset = ProteinDataset(to_embed) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn, shuffle=False) with torch.no_grad(): for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'): seqs = to_embed[i * batch_size:(i + 1) * batch_size] input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device) x = self.embed(input_ids) residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach().float() # required for sql embeddings = get_embeddings(residue_embeddings, attention_mask) for seq, emb, mask in zip(seqs, embeddings, attention_mask): if full_embeddings: emb = emb[mask.bool()] c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)", (seq, emb.cpu().numpy().tobytes())) if (i + 1) % 100 == 0: conn.commit() conn.commit() conn.close() return None embeddings_dict = {} sequences = sorted(sequences, key=len, reverse=True) dataset = ProteinDataset(sequences) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn, shuffle=False) with torch.no_grad(): for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'): seqs = sequences[i * batch_size:(i + 1) * batch_size] input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device) x = self.embed(input_ids) residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach() if full_precision: residue_embeddings = residue_embeddings.float() embeddings = get_embeddings(residue_embeddings, attention_mask).cpu() for seq, emb in zip(seqs, embeddings): embeddings_dict[seq] = emb return embeddings_dict ### ESM++ Models class ESMplusplusModel(PreTrainedESMplusplusModel): """ ESM++ model. transformer model with no heads """ config_class = ESMplusplusConfig def __init__(self, config: ESMplusplusConfig, **kwargs): super().__init__(config, **kwargs) self.config = config self.vocab_size = config.vocab_size self.embed = nn.Embedding(self.vocab_size, config.hidden_size) self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout) self.tokenizer = EsmSequenceTokenizer() self.init_weights() def get_input_embeddings(self): return self.embed def set_input_embeddings(self, value): self.embed = value def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, # to play nice with HF adjacent packages ) -> TransformerOutput: """Forward pass for masked language modeling. Args: input_ids: Input token IDs attention_mask: Attention mask inputs_embeds: Optional precomputed embeddings output_hidden_states: Whether to return all hidden states output_attentions: Whether to return attention weights Returns: TransformerOutput containing last hidden state and optionally all hidden states and attention weights """ if inputs_embeds is None: x = self.embed(input_ids) else: x = inputs_embeds return self.transformer(x, attention_mask, output_hidden_states, output_attentions) class ESMplusplusForMaskedLM(PreTrainedESMplusplusModel): """ ESM++ model for masked language modeling. Implements the base ESM++ architecture with a masked language modeling head. """ config_class = ESMplusplusConfig def __init__(self, config: ESMplusplusConfig, **kwargs): super().__init__(config, **kwargs) self.config = config self.vocab_size = config.vocab_size self.embed = nn.Embedding(self.vocab_size, config.hidden_size) self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout) self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size) self.ce_loss = nn.CrossEntropyLoss() self.tokenizer = EsmSequenceTokenizer() self.init_weights() def get_input_embeddings(self): return self.embed def set_input_embeddings(self, value): self.embed = value def get_output_embeddings(self): return self.sequence_head[-1] def set_output_embeddings(self, new_embeddings): self.sequence_head[-1] = new_embeddings def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, # to play nice with HF adjacent packages ) -> ESMplusplusOutput: """Forward pass for masked language modeling. Args: input_ids: Input token IDs attention_mask: Attention mask inputs_embeds: Optional precomputed embeddings labels: Optional labels for masked tokens output_hidden_states: Whether to return all hidden states output_attentions: Whether to return attention weights Returns: ESMplusplusOutput containing loss, logits, hidden states and attention weights """ if inputs_embeds is None: x = self.embed(input_ids) else: x = inputs_embeds output = self.transformer(x, attention_mask, output_hidden_states, output_attentions) x = output.last_hidden_state logits = self.sequence_head(x) loss = None if labels is not None: loss = self.ce_loss(logits.view(-1, self.vocab_size), labels.view(-1)) return ESMplusplusOutput( loss=loss, logits=logits, last_hidden_state=x, hidden_states=output.hidden_states, attentions=output.attentions, ) class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM): """ ESM++ model for sequence classification. Extends the base ESM++ model with a classification head. """ def __init__(self, config: ESMplusplusConfig, **kwargs): super().__init__(config, **kwargs) self.config = config self.num_labels = config.num_labels self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4) # Large intermediate projections help with sequence classification tasks (*4) self.mse = nn.MSELoss() self.ce = nn.CrossEntropyLoss() self.bce = nn.BCEWithLogitsLoss() self.init_weights() def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, # to play nice with HF adjacent packages ) -> ESMplusplusOutput: """Forward pass for sequence classification. Args: input_ids: Input token IDs attention_mask: Attention mask inputs_embeds: Optional precomputed embeddings labels: Optional labels for classification output_hidden_states: Whether to return all hidden states output_attentions: Whether to return attention weights Returns: ESMplusplusOutput containing loss, logits, and hidden states """ output = super().forward( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, labels=None, output_attentions=output_attentions, output_hidden_states=output_hidden_states ) x = output.last_hidden_state cls_features = x[:, 0, :] mean_features = self.mean_pooling(x, attention_mask) # we include mean pooling features to help with early convergence, the cost of this is basically zero features = torch.cat([cls_features, mean_features], dim=-1) logits = self.classifier(features) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": if self.num_labels == 1: loss = self.mse(logits.flatten(), labels.flatten()) else: loss = self.mse(logits, labels) elif self.config.problem_type == "single_label_classification": loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss = self.bce(logits, labels) return ESMplusplusOutput( loss=loss, logits=logits, last_hidden_state=x, hidden_states=output.hidden_states, ) class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM): """ ESM++ model for token classification. Extends the base ESM++ model with a token classification head. """ def __init__(self, config: ESMplusplusConfig): super().__init__(config) self.config = config self.num_labels = config.num_labels self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4) # Large intermediate projections help with sequence classification tasks (*4) self.loss_fct = nn.CrossEntropyLoss() self.init_weights() def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, # to play nice with HF adjacent packages ) -> ESMplusplusOutput: """Forward pass for token classification. Args: input_ids: Input token IDs attention_mask: Attention mask inputs_embeds: Optional precomputed embeddings labels: Optional labels for token classification output_hidden_states: Whether to return all hidden states output_attentions: Whether to return attention weights Returns: ESMplusplusOutput containing loss, logits, and hidden states """ output = super().forward( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, labels=None, output_attentions=output_attentions, output_hidden_states=output_hidden_states ) x = output.last_hidden_state logits = self.classifier(x) loss = None if labels is not None: loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return ESMplusplusOutput( loss=loss, logits=logits, last_hidden_state=x, hidden_states=output.hidden_states, ) ### Loading from EvolutionaryScale @staticmethod @cache def data_root(model: str): if "INFRA_PROVIDER" in os.environ: return Path("") # Try to download from hugginface if it doesn't exist if model.startswith("esmc-300"): path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-300m-2024-12")) elif model.startswith("esmc-600"): path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-600m-2024-12")) else: raise ValueError(f"{model=} is an invalid model name.") return path def ESMplusplus_300M(device: torch.device | str = "cpu"): with torch.device(device): config = ESMplusplusConfig( hidden_size=960, num_attention_heads=15, num_hidden_layers=30, ) model = ESMplusplusForMaskedLM(config) state_dict = torch.load( data_root("esmc-300") / "data/weights/esmc_300m_2024_12_v0.pth", map_location=device, ) model.load_state_dict(state_dict) return model def ESMplusplus_600M(device: torch.device | str = "cpu"): with torch.device(device): config = ESMplusplusConfig( hidden_size=1152, num_attention_heads=18, num_hidden_layers=36, ) model = ESMplusplusForMaskedLM(config) state_dict = torch.load( data_root("esmc-600") / "data/weights/esmc_600m_2024_12_v0.pth", map_location=device, ) model.load_state_dict(state_dict) return model ### Tokenization SEQUENCE_VOCAB = [ "", "", "", "", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "|", "", ] class EsmSequenceTokenizer(PreTrainedTokenizerFast): model_input_names = ["input_ids", "attention_mask"] def __init__( self, unk_token="", cls_token="", pad_token="", mask_token="", eos_token="", chain_break_token="|", **kwargs, ): all_tokens = SEQUENCE_VOCAB token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)} # a character-level tokenizer is the same as BPE with no token merges bpe = BPE(token_to_id, merges=[], unk_token=unk_token) tokenizer = Tokenizer(bpe) special_tokens = [ cls_token, pad_token, mask_token, eos_token, chain_break_token, ] self.cb_token = chain_break_token additional_special_tokens = [chain_break_token] tokenizer.add_special_tokens(special_tokens) # This is where we configure the automatic addition of special tokens when we call # tokenizer(text, add_special_tokens=True). Note that you can also configure how two # sequences are merged if you want. tokenizer.post_processor = TemplateProcessing( # type: ignore single=" $A ", special_tokens=[ ("", tokenizer.token_to_id("")), ("", tokenizer.token_to_id("")), ], ) super().__init__( tokenizer_object=tokenizer, unk_token=unk_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, eos_token=eos_token, additional_special_tokens=additional_special_tokens, **kwargs, ) # These are a footgun, we never use the `bos` token anywhere so we're just overriding it here. @property def bos_token(self): return self.cls_token @property def bos_token_id(self): return self.cls_token_id @property def chain_break_token(self): return self.cb_token @property def chain_break_token_id(self): return self.convert_tokens_to_ids(self.chain_break_token) @property def all_token_ids(self): return list(range(self.vocab_size)) @property def special_token_ids(self): return self.all_special_ids