# coding=utf-8 # Copyright 2020, Microsoft and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DeBERTa model configuration""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from transformers.configuration_utils import PretrainedConfig from transformers.onnx import OnnxConfig from transformers.utils import logging if TYPE_CHECKING: from transformers import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType logger = logging.get_logger(__name__) class DebertaConfiguration(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. relative_attention (`bool`, *optional*, defaults to `False`): Whether use relative position encoding. max_relative_positions (`int`, *optional*, defaults to 1): The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value as `max_position_embeddings`. pad_token_id (`int`, *optional*, defaults to 0): The value used to pad input_ids. position_biased_input (`bool`, *optional*, defaults to `True`): Whether add absolute position embedding to content embedding. pos_att_type (`List[str]`, *optional*): The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`, `["p2c", "c2p"]`. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. Example: ```python >>> from transformers import DebertaConfig, DebertaModel >>> # Initializing a DeBERTa microsoft/deberta-base style configuration >>> configuration = DebertaConfig() >>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration >>> model = DebertaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "deberta" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=0, initializer_range=0.02, layer_norm_eps=1e-7, relative_attention=False, max_relative_positions=-1, pad_token_id=0, position_biased_input=True, pos_att_type=None, pooler_dropout=0, pooler_hidden_act="gelu", **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.relative_attention = relative_attention self.max_relative_positions = max_relative_positions self.pad_token_id = pad_token_id self.position_biased_input = position_biased_input # Backwards compatibility if isinstance(pos_att_type, str): pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")] self.pos_att_type = pos_att_type self.vocab_size = vocab_size self.layer_norm_eps = layer_norm_eps self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size) self.pooler_dropout = pooler_dropout self.pooler_hidden_act = pooler_hidden_act # Copied from transformers.models.deberta_v2.configuration_deberta_v2.DebertaV2OnnxConfig class DebertaOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)]) @property def default_onnx_opset(self) -> int: return 12 def generate_dummy_inputs( self, preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], batch_size: int = -1, seq_length: int = -1, num_choices: int = -1, is_pair: bool = False, framework: Optional["TensorType"] = None, num_channels: int = 3, image_width: int = 40, image_height: int = 40, tokenizer: "PreTrainedTokenizerBase" = None, ) -> Mapping[str, Any]: dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs