--- library_name: transformers tags: - mergekit - merge - llama-3.1 - roleplay - function calling base_model: - arcee-ai/Llama-3.1-SuperNova-Lite - akjindal53244/Llama-3.1-Storm-8B - Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2 - unsloth/Meta-Llama-3.1-8B-Instruct model-index: - name: ZEUS-8B-V2 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 80.29 name: strict accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 31.61 name: normalized accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 21.15 name: exact match source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.94 name: acc_norm source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.24 name: acc_norm source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 32.18 name: accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2 name: Open LLM Leaderboard new_version: T145/ZEUS-8B-V17 --- # ZEUS 8B 🌩️ V2 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) as a base. ### Models Merged The following models were included in the merge: * [arcee-ai/Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite) * [akjindal53244/Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) * [Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2](https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: unsloth/Meta-Llama-3.1-8B-Instruct dtype: bfloat16 merge_method: dare_ties parameters: int8_mask: 1.0 slices: - sources: - layer_range: [0, 32] model: akjindal53244/Llama-3.1-Storm-8B parameters: density: 0.8 weight: 0.25 - layer_range: [0, 32] model: arcee-ai/Llama-3.1-SuperNova-Lite parameters: density: 0.8 weight: 0.33 - layer_range: [0, 32] model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2 parameters: density: 0.8 weight: 0.42 - layer_range: [0, 32] model: unsloth/Meta-Llama-3.1-8B-Instruct tokenizer_source: base ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_T145__ZEUS-8B-V2)! Based on the listed rankings as of 4/12/24, is the top-rank 8B model. | Metric |Value| |-------------------|----:| |Avg. |30.07| |IFEval (0-Shot) |80.29| |BBH (3-Shot) |31.61| |MATH Lvl 5 (4-Shot)|21.15| |GPQA (0-shot) | 6.94| |MuSR (0-shot) | 8.24| |MMLU-PRO (5-shot) |32.18| # Inference Settings Personal recommendations are to use a [i1-Q4_K_M](https://www.reddit.com/r/LocalLLaMA/comments/1ck76rk/weightedimatrix_vs_static_quants/) quant with these settings: ``` num_ctx = 4096 repeat_penalty = 1.2 temperature = 0.85 tfs_z = 1.4 top_k = 0 # Change to 40+ if you're roleplaying top_p = 1 # Change to 0.9 if top_k > 0 ``` Other recommendations can be found on [this paper on mobile LLMs](https://openreview.net/pdf?id=ahVsd1hy2W), [this paper on balancing model parameters](https://arxiv.org/html/2408.13586v1), and [this Reddit post about tweaking Llama 3.1 parameters](https://www.reddit.com/r/LocalLLaMA/comments/1ej1zrl/try_these_settings_for_llama_31_for_longer_or/).