--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whisper-small-chinese-tw-minnan results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: nan-tw split: test args: nan-tw metrics: - name: Wer type: wer value: 96.9298245614035 --- # whisper-small-chinese-tw-minnan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.1626 - Wer: 96.9298 - Cer: 30.1452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------:| | 0.106 | 3.6364 | 1000 | 0.8017 | 110.0877 | 37.4445 | | 0.0094 | 7.2727 | 2000 | 0.9844 | 101.9424 | 37.1209 | | 0.0007 | 10.9091 | 3000 | 1.0714 | 95.8020 | 31.5374 | | 0.0002 | 14.5455 | 4000 | 1.1310 | 96.0526 | 29.5809 | | 0.0001 | 18.1818 | 5000 | 1.1626 | 96.9298 | 30.1452 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3