--- language: de widget: - text: Hallo, ich bin ein Sprachmodell license: gpl ---

GPT2 Model for German Language

Model Name: Tanhim/gpt2-model-de
language: German or Deutsch
thumbnail: https://huggingface.co/Tanhim/gpt2-model-de
datasets: Ten Thousand German News Articles Dataset
### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, I set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generation= pipeline('text-generation', model='Tanhim/gpt2-model-de', tokenizer='Tanhim/gpt2-model-de') >>> set_seed(42) >>> generation("Hallo, ich bin ein Sprachmodell,", max_length=30, num_return_sequences=5) ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Tanhim/gpt2-model-de") model = AutoModelWithLMHead.from_pretrained("Tanhim/gpt2-model-de") text = "Ersetzen Sie mich durch einen beliebigen Text, den Sie wünschen." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` Citation request: If you use the model of this repository in your research, please consider citing the following way: ```python @misc{GermanTransformer, author = {Tanhim Islam}, title = {{PyTorch Based Transformer Machine Learning Model for German Text Generation Task}}, howpublished = "\url{https://huggingface.co/Tanhim/gpt2-model-de}", year = {2021}, note = "[Online; accessed 17-June-2021]" } ```