--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: - ru - en --- # bge-m3 model for english and russian This is a tokenizer shrinked version of [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). The current model has only English and Russian tokens left in the vocabulary. Thus, the vocabulary is 21% of the original, and number of parameters in the whole model is 63.3% of the original, without any loss in the quality of English and Russian embeddings. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('TatonkaHF/bge-m3_en_ru') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('TatonkaHF/bge-m3_en_ru') model = AutoModel.from_pretrained('TatonkaHF/bge-m3_en_ru') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Specs Other bge-m3 models are also shrinked. | Model name | |---------------------------| | [bge-m3-retromae_en_ru](https://huggingface.co/TatonkaHF/bge-m3-retromae_en_ru) | | [bge-m3-unsupervised_en_ru](https://huggingface.co/TatonkaHF/bge-m3-unsupervised_en_ru) | | [bge-m3_en_ru](https://huggingface.co/TatonkaHF/bge-m3_en_ru) | ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Reference: Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, Zheng Liu. [BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation](https://arxiv.org/abs/2402.03216). Inspired by [LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) and [https://discuss.huggingface.co/t/tokenizer-shrinking-recipes/8564/1](https://discuss.huggingface.co/t/tokenizer-shrinking-recipes/8564/1). License: [mit](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md)