--- license: apache-2.0 tags: - merge - mergekit - BioMistral/BioMistral-7B-DARE - argilla/CapybaraHermes-2.5-Mistral-7B --- # BioMistral-Carpybara-Slerp BioMistral-Carpybara-Slerp is a merge of the following models: * [BioMistral/BioMistral-7B-DARE](https://huggingface.co/BioMistral/BioMistral-7B-DARE) * [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B) ## Evaluations | Benchmark | BioMistral-Carpybara-Slerp | Orca-2-7b | llama-2-7b | meditron-7b | meditron-70b | | --- | --- | --- | --- | --- | --- | | MedMCQA | | | | | | | ClosedPubMedQA | | | | | | | PubMedQA | | | | | | | MedQA | | | | | | | MedQA4 | | | | | | | MedicationQA | | | | | | | MMLU Medical | | | | | | | MMLU | | | | | | | TruthfulQA | | | | | | | GSM8K | | | | | | | ARC | | | | | | | HellaSwag | | | | | | | Winogrande | | | | | | More details on the Open LLM Leaderboard evaluation results can be found here. ## 🧩 Configuration ```yaml slices: - sources: - model: BioMistral/BioMistral-7B-DARE layer_range: [0, 32] - model: argilla/CapybaraHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: argilla/CapybaraHermes-2.5-Mistral-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Technoculture/BioMistral-Carpybara-Slerp" messages = [{"role": "user", "content": "I am feeling sleepy these days"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```