--- license: apache-2.0 base_model: microsoft/resnet-34 tags: - generated_from_trainer metrics: - accuracy model-index: - name: resnet-fine_tuned results: [] datasets: - Falah/Alzheimer_MRI library_name: transformers pipeline_tag: image-classification --- # resnet-fine_tuned This model is a fine-tuned version of [microsoft/resnet-34](https://huggingface.co/microsoft/resnet-34) on the Falah/Alzheimer_MRI dataset. It achieves the following results on the evaluation set: - Loss: 0.1983 - Accuracy: 0.9219 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9041 | 1.0 | 80 | 0.9659 | 0.5352 | | 0.8743 | 2.0 | 160 | 0.9348 | 0.5797 | | 0.7723 | 3.0 | 240 | 0.7793 | 0.6594 | | 0.6864 | 4.0 | 320 | 0.6799 | 0.7031 | | 0.5347 | 5.0 | 400 | 0.5596 | 0.7703 | | 0.4282 | 6.0 | 480 | 0.5078 | 0.7766 | | 0.4315 | 7.0 | 560 | 0.5455 | 0.7680 | | 0.3747 | 8.0 | 640 | 0.4203 | 0.8266 | | 0.2977 | 9.0 | 720 | 0.3926 | 0.8469 | | 0.2252 | 10.0 | 800 | 0.3024 | 0.8742 | | 0.2675 | 11.0 | 880 | 0.2731 | 0.8906 | | 0.2136 | 12.0 | 960 | 0.3045 | 0.875 | | 0.1998 | 13.0 | 1040 | 0.2370 | 0.9 | | 0.2406 | 14.0 | 1120 | 0.2387 | 0.9086 | | 0.1873 | 15.0 | 1200 | 0.1983 | 0.9219 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3