--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # china-only-mar11 This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("Thang203/china-only-mar11") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 20 * Number of training documents: 847
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | language - llms - models - data - large | 21 | -1_language_llms_models_data | | 0 | visual - image - multimodal - models - language | 205 | 0_visual_image_multimodal_models | | 1 | embodied - driving - navigation - robot - robotic | 142 | 1_embodied_driving_navigation_robot | | 2 | recommendation - user - recommendations - systems - behavior | 16 | 2_recommendation_user_recommendations_systems | | 3 | agents - social - bots - interactions - ai agents | 16 | 3_agents_social_bots_interactions | | 4 | rl - reinforcement learning - reinforcement - learning - policy | 15 | 4_rl_reinforcement learning_reinforcement_learning | | 5 | molecular - design - property - prediction - gnns | 17 | 5_molecular_design_property_prediction | | 6 | code - code generation - generation - software - programming | 11 | 6_code_code generation_generation_software | | 7 | medical - knowledge - medical knowledge - llms - language | 73 | 7_medical_knowledge_medical knowledge_llms | | 8 | extraction - information extraction - event - information - relation | 16 | 8_extraction_information extraction_event_information | | 9 | safety - llms - robustness - instructions - assurance | 15 | 9_safety_llms_robustness_instructions | | 10 | reasoning - prompting - cot - llms - chainofthought | 14 | 10_reasoning_prompting_cot_llms | | 11 | knowledge - language - knowledge graph - web - kg | 52 | 11_knowledge_language_knowledge graph_web | | 12 | question - answering - commonsense - question answering - knowledge | 17 | 12_question_answering_commonsense_question answering | | 13 | models - language - model - training - language models | 18 | 13_models_language_model_training | | 14 | dialogue - dialog - models - responses - model | 104 | 14_dialogue_dialog_models_responses | | 15 | detection - fake - news - detectors - texts | 31 | 15_detection_fake_news_detectors | | 16 | chatgpt - sentiment - evaluation - sentiment analysis - human | 16 | 16_chatgpt_sentiment_evaluation_sentiment analysis | | 17 | chinese - evaluation - models - language - language models | 22 | 17_chinese_evaluation_models_language | | 18 | translation - arabic - languages - language - models | 26 | 18_translation_arabic_languages_language |
## Training hyperparameters * calculate_probabilities: False * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: 20 * seed_topic_list: None * top_n_words: 10 * verbose: True * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.25.2 * HDBSCAN: 0.8.33 * UMAP: 0.5.5 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.6.1 * Transformers: 4.38.2 * Numba: 0.58.1 * Plotly: 5.15.0 * Python: 3.10.12