---
inference: false
license: other
---
# LmSys' Long Chat 7B GPTQ
These files are GPTQ 4bit model files for [LmSys' Long Chat 7B](https://huggingface.co/lmsys/longchat-7b-16k).
It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
**This iGPTQ offers up to 16K context size**
The increased context is tested to work with [ExLlama](https://github.com/turboderp/exllama), via the latest release of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
This model should NOT be used at 2048 context. For that, please use the standard Vicuna 1.3 model.
It has also been tested from Python code using AutoGPTQ, and `trust_remote_code=True`.
Please read carefully below to see how to use it.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/LongChat-7B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/LongChat-7B-GGML)
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lmsys/longchat-7b-16k)
## Prompt template
```
A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input
USER: prompt
ASSISTANT:
```
## How to easily download and use this model in text-generation-webui with ExLlama
Please make sure you're using the latest version of text-generation-webui
1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/LongChat-7B-GPTQ`.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done"
5. Untick **Autoload the model**
6. In the top left, click the refresh icon next to **Model**.
7. In the **Model** dropdown, choose the model you just downloaded: `LongChat-7B-GPTQ`
8. To use the increased context, set the **Loader** to **ExLlama**, set **max_seq_len** to 16384, 8192 or 4096, and set **compress_pos_emb** to **8** for 16384 context, **4** for 8192 context, or to **2** for 4096 context.
9. Now click **Save Settings** followed by **Reload**
10. The model will automatically load, and is now ready for use!
11. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
## How to use this GPTQ model from Python code with AutoGPTQ
First make sure you have AutoGPTQ and Einops installed:
```
pip3 install einops auto-gptq
```
Then run the following code. Note that in order to get this to work, `config.json` has been hardcoded to a sequence length of 8192.
If you want to try 4096 or 16384 instead, please manually edit `config.json` to set `max_position_embeddings` to the value you want.
```python
from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import argparse
model_name_or_path = "TheBloke/LongChat-7B-GPTQ"
model_basename = "longchat-7b-16k-GPTQ-4bit-128g.no-act.order"
use_triton = False
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
model_basename=model_basename,
use_safetensors=True,
trust_remote_code=True,
device_map='auto',
use_triton=use_triton,
quantize_config=None)
model.seqlen = 8192
# Note: check the prompt template is correct for this model.
prompt = "Tell me about AI"
prompt_template=f'''USER: {prompt}
ASSISTANT:'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15
)
print(pipe(prompt_template)[0]['generated_text'])
```
## Provided files
**longchat-7b-16k-GPTQ-4bit-128g.no-act.order.safetensors**
This will work with AutoGPTQ, ExLlama, and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
* `longchat-7b-16k-GPTQ-4bit-128g.no-act.order.safetensors`
* Works for use with ExLlama with increased context (4096, 8192, 16384, or other values in-between)
* Works with AutoGPTQ in Python code, including with increased context, if `trust_remote_code=True` is set.
* Should work with GPTQ-for-LLaMa in CUDA mode, but unknown if increased context works - TBC. May have issues with GPTQ-for-LLaMa Triton mode.
* Works with text-generation-webui, including one-click-installers.
* Parameters: Groupsize = 128. Act Order / desc_act = False.
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
# Original model card: LmSys' Long Chat 7B
# longchat-7b-16k Model Card
## Model details
**Model type:**
longchat-7b-16k is an open-source chatbot trained by fine-tuning llama-7b on user-shared conversations collected from ShareGPT, using the condensing rotary embedding technique reported in the [blog](https://lmsys.org/blog/2023-06-29-longchat).
**Model date:**
longchat-7b-16k was trained on June 2023.
**Organizations developing the model:**
The LongChat developers: Dacheng Li*, Rulin Shao*, Anze Xie, Ying Sheng, Lianmin Zheng, Ion Stoica, Xuezhe Ma, and Hao Zhang
**Paper or resources for more information:**
https://github.com/DachengLi1/LongChat
**Where to send questions or comments about the model:**
https://github.com/DachengLi1/LongChat
## Intended use
**Primary intended uses:**
The primary use of longchat-7b-16k is for research purposes.
**Primary intended users:**
The primary intended users of the model are researchers in natural language processing, machine learning, and artificial intelligence.
## Training dataset
80K conversations collected from ShareGPT.com.
## Evaluation dataset
A preliminary evaluation of the model quality is conducted by our released [LongEval](https://github.com/DachengLi1/LongChat).