--- base_model: defog/sqlcoder-34b-alpha inference: false language: - en license: cc-by-4.0 model_creator: Defog.ai model_name: SQLCoder 34B Alpha model_type: llama pipeline_tag: text-generation prompt_template: "## Task\nGenerate a SQL query to answer the following question:\n\ `{prompt}`\n\n### Database Schema\nThis query will run on a database whose schema\ \ is represented in this string:\nCREATE TABLE products (\n product_id INTEGER\ \ PRIMARY KEY, -- Unique ID for each product\n name VARCHAR(50), -- Name of the\ \ product\n price DECIMAL(10,2), -- Price of each unit of the product\n quantity\ \ INTEGER -- Current quantity in stock\n);\n\nCREATE TABLE sales (\n sale_id INTEGER\ \ PRIMARY KEY, -- Unique ID for each sale\n product_id INTEGER, -- ID of product\ \ sold\n customer_id INTEGER, -- ID of customer who made purchase\n salesperson_id\ \ INTEGER, -- ID of salesperson who made the sale\n sale_date DATE, -- Date the\ \ sale occurred\n quantity INTEGER -- Quantity of product sold\n);\n\n-- sales.product_id\ \ can be joined with products.product_id\n\n### SQL\nGiven the database schema,\ \ here is the SQL query that answers `{prompt}`:\n```sql\n" quantized_by: TheBloke ---
TheBlokeAI

Chat & support: TheBloke's Discord server

Want to contribute? TheBloke's Patreon page

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


# SQLCoder 34B Alpha - AWQ - Model creator: [Defog.ai](https://huggingface.co/defog) - Original model: [SQLCoder 34B Alpha](https://huggingface.co/defog/sqlcoder-34b-alpha) ## Description This repo contains AWQ model files for [Defog.ai's SQLCoder 34B Alpha](https://huggingface.co/defog/sqlcoder-34b-alpha). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/sqlcoder-34b-alpha-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/sqlcoder-34b-alpha-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/sqlcoder-34b-alpha-GGUF) * [Defog.ai's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/defog/sqlcoder-34b-alpha) ## Prompt template: Sqlcoder ``` ## Task Generate a SQL query to answer the following question: `{prompt}` ### Database Schema This query will run on a database whose schema is represented in this string: CREATE TABLE products ( product_id INTEGER PRIMARY KEY, -- Unique ID for each product name VARCHAR(50), -- Name of the product price DECIMAL(10,2), -- Price of each unit of the product quantity INTEGER -- Current quantity in stock ); CREATE TABLE sales ( sale_id INTEGER PRIMARY KEY, -- Unique ID for each sale product_id INTEGER, -- ID of product sold customer_id INTEGER, -- ID of customer who made purchase salesperson_id INTEGER, -- ID of salesperson who made the sale sale_date DATE, -- Date the sale occurred quantity INTEGER -- Quantity of product sold ); -- sales.product_id can be joined with products.product_id ### SQL Given the database schema, here is the SQL query that answers `{prompt}`: ```sql ``` ## Licensing The creator of the source model has listed its license as `cc-by-4.0`, and this quantization has therefore used that same license. As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly. In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Defog.ai's SQLCoder 34B Alpha](https://huggingface.co/defog/sqlcoder-34b-alpha). ## Provided files, and AWQ parameters I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered. Models are released as sharded safetensors files. | Branch | Bits | GS | AWQ Dataset | Seq Len | Size | | ------ | ---- | -- | ----------- | ------- | ---- | | [main](https://huggingface.co/TheBloke/sqlcoder-34b-alpha-AWQ/tree/main) | 4 | 128 | [code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/viewer/) | 4096 | 18.31 GB ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/sqlcoder-34b-alpha-AWQ`. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `sqlcoder-34b-alpha-AWQ` 7. Select **Loader: AutoAWQ**. 8. Click Load, and the model will load and is now ready for use. 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! ## Multi-user inference server: vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - Please ensure you are using vLLM version 0.2 or later. - When using vLLM as a server, pass the `--quantization awq` parameter. For example: ```shell python3 -m vllm.entrypoints.api_server --model TheBloke/sqlcoder-34b-alpha-AWQ --quantization awq --dtype auto ``` - When using vLLM from Python code, again set `quantization=awq`. For example: ```python from vllm import LLM, SamplingParams prompts = [ "Tell me about AI", "Write a story about llamas", "What is 291 - 150?", "How much wood would a woodchuck chuck if a woodchuck could chuck wood?", ] prompt_template=f'''## Task Generate a SQL query to answer the following question: `{prompt}` ### Database Schema This query will run on a database whose schema is represented in this string: CREATE TABLE products ( product_id INTEGER PRIMARY KEY, -- Unique ID for each product name VARCHAR(50), -- Name of the product price DECIMAL(10,2), -- Price of each unit of the product quantity INTEGER -- Current quantity in stock ); CREATE TABLE sales ( sale_id INTEGER PRIMARY KEY, -- Unique ID for each sale product_id INTEGER, -- ID of product sold customer_id INTEGER, -- ID of customer who made purchase salesperson_id INTEGER, -- ID of salesperson who made the sale sale_date DATE, -- Date the sale occurred quantity INTEGER -- Quantity of product sold ); -- sales.product_id can be joined with products.product_id ### SQL Given the database schema, here is the SQL query that answers `{prompt}`: ```sql ''' prompts = [prompt_template.format(prompt=prompt) for prompt in prompts] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="TheBloke/sqlcoder-34b-alpha-AWQ", quantization="awq", dtype="auto") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` ## Multi-user inference server: Hugging Face Text Generation Inference (TGI) Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/sqlcoder-34b-alpha-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''## Task Generate a SQL query to answer the following question: `{prompt}` ### Database Schema This query will run on a database whose schema is represented in this string: CREATE TABLE products ( product_id INTEGER PRIMARY KEY, -- Unique ID for each product name VARCHAR(50), -- Name of the product price DECIMAL(10,2), -- Price of each unit of the product quantity INTEGER -- Current quantity in stock ); CREATE TABLE sales ( sale_id INTEGER PRIMARY KEY, -- Unique ID for each sale product_id INTEGER, -- ID of product sold customer_id INTEGER, -- ID of customer who made purchase salesperson_id INTEGER, -- ID of salesperson who made the sale sale_date DATE, -- Date the sale occurred quantity INTEGER -- Quantity of product sold ); -- sales.product_id can be joined with products.product_id ### SQL Given the database schema, here is the SQL query that answers `{prompt}`: ```sql ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: ", response) ``` ## Inference from Python code using Transformers ### Install the necessary packages - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later. - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later. ```shell pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0" ``` Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0. If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command: ```shell pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl ``` If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y autoawq git clone https://github.com/casper-hansen/AutoAWQ cd AutoAWQ pip3 install . ``` ### Transformers example code (requires Transformers 4.35.0 and later) ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model_name_or_path = "TheBloke/sqlcoder-34b-alpha-AWQ" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, low_cpu_mem_usage=True, device_map="cuda:0" ) # Using the text streamer to stream output one token at a time streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) prompt = "Tell me about AI" prompt_template=f'''## Task Generate a SQL query to answer the following question: `{prompt}` ### Database Schema This query will run on a database whose schema is represented in this string: CREATE TABLE products ( product_id INTEGER PRIMARY KEY, -- Unique ID for each product name VARCHAR(50), -- Name of the product price DECIMAL(10,2), -- Price of each unit of the product quantity INTEGER -- Current quantity in stock ); CREATE TABLE sales ( sale_id INTEGER PRIMARY KEY, -- Unique ID for each sale product_id INTEGER, -- ID of product sold customer_id INTEGER, -- ID of customer who made purchase salesperson_id INTEGER, -- ID of salesperson who made the sale sale_date DATE, -- Date the sale occurred quantity INTEGER -- Quantity of product sold ); -- sales.product_id can be joined with products.product_id ### SQL Given the database schema, here is the SQL query that answers `{prompt}`: ```sql ''' # Convert prompt to tokens tokens = tokenizer( prompt_template, return_tensors='pt' ).input_ids.cuda() generation_params = { "do_sample": True, "temperature": 0.7, "top_p": 0.95, "top_k": 40, "max_new_tokens": 512, "repetition_penalty": 1.1 } # Generate streamed output, visible one token at a time generation_output = model.generate( tokens, streamer=streamer, **generation_params ) # Generation without a streamer, which will include the prompt in the output generation_output = model.generate( tokens, **generation_params ) # Get the tokens from the output, decode them, print them token_output = generation_output[0] text_output = tokenizer.decode(token_output) print("model.generate output: ", text_output) # Inference is also possible via Transformers' pipeline from transformers import pipeline pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, **generation_params ) pipe_output = pipe(prompt_template)[0]['generated_text'] print("pipeline output: ", pipe_output) ``` ## Compatibility The files provided are tested to work with: - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`. - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later. - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later. - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later. ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. # Original model card: Defog.ai's SQLCoder 34B Alpha # Defog SQLCoder **Updated on Nov 14 to reflect benchmarks for SQLCoder-34B** Defog's SQLCoder is a state-of-the-art LLM for converting natural language questions to SQL queries. [Interactive Demo](https://defog.ai/sqlcoder-demo/) | [🤗 HF Repo](https://huggingface.co/defog/sqlcoder-34b-alpha) | [♾️ Colab](https://colab.research.google.com/drive/1z4rmOEiFkxkMiecAWeTUlPl0OmKgfEu7?usp=sharing) | [🐦 Twitter](https://twitter.com/defogdata) ## TL;DR SQLCoder-34B is a 34B parameter model that outperforms `gpt-4` and `gpt-4-turbo` for natural language to SQL generation tasks on our [sql-eval](https://github.com/defog-ai/sql-eval) framework, and significantly outperforms all popular open-source models. SQLCoder-34B is fine-tuned on a base CodeLlama model. ## Results on novel datasets not seen in training | model | perc_correct | |-|-| | defog-sqlcoder-34b | 84.0 | | gpt4-turbo-2023-11-09 | 82.5 | | gpt4-2023-11-09 | 82.5 | | defog-sqlcoder2 | 77.5 | | gpt4-2023-08-28 | 74.0 | | defog-sqlcoder-7b | 71.0 | | gpt-3.5-2023-10-04 | 66.0 | | claude-2 | 64.5 | | gpt-3.5-2023-08-28 | 61.0 | | claude_instant_1 | 61.0 | | text-davinci-003 | 52.5 | ![image](https://github.com/defog-ai/sqlcoder/assets/5008293/caed3423-8e86-4952-9da1-1a5e016a4696) ## License The code in this repo (what little there is of it) is Apache-2 licensed. The model weights have a `CC BY-SA 4.0` license. The TL;DR is that you can use and modify the model for any purpose – including commercial use. However, if you modify the weights (for example, by fine-tuning), you must open-source your modified weights under the same license terms. ## Training Defog was trained on more than 20,000 human-curated questions. These questions were based on 10 different schemas. None of the schemas in the training data were included in our evaluation framework. You can read more about our [training approach](https://defog.ai/blog/open-sourcing-sqlcoder2-7b/) and [evaluation framework](https://defog.ai/blog/open-sourcing-sqleval/). ## Results by question category We classified each generated question into one of 5 categories. The table displays the percentage of questions answered correctly by each model, broken down by category. | | date | group_by | order_by | ratio | join | where | | -------------- | ---- | -------- | -------- | ----- | ---- | ----- | | sqlcoder-34b | 80 | 94.3 | 88.6 | 74.3 | 82.9 | 82.9 | | gpt-4 | 68 | 94.3 | 85.7 | 77.1 | 85.7 | 80 | | sqlcoder2-15b | 76 | 80 | 77.1 | 60 | 77.1 | 77.1 | | sqlcoder-7b | 64 | 82.9 | 74.3 | 54.3 | 74.3 | 74.3 | | gpt-3.5 | 68 | 77.1 | 68.6 | 37.1 | 71.4 | 74.3 | | claude-2 | 52 | 71.4 | 74.3 | 57.1 | 65.7 | 62.9 | | claude-instant | 48 | 71.4 | 74.3 | 45.7 | 62.9 | 60 | | gpt-3 | 32 | 71.4 | 68.6 | 25.7 | 57.1 | 54.3 | image ## Using SQLCoder You can use SQLCoder via the `transformers` library by downloading our model weights from the Hugging Face repo. We have added sample code for [inference](./inference.py) on a [sample database schema](./metadata.sql). ```bash python inference.py -q "Question about the sample database goes here" # Sample question: # Do we get more revenue from customers in New York compared to customers in San Francisco? Give me the total revenue for each city, and the difference between the two. ``` You can also use a demo on our website [here](https://defog.ai/sqlcoder-demo) ## Hardware Requirements SQLCoder-34B has been tested on a 4xA10 GPU with `float16` weights. You can also load an 8-bit and 4-bit quantized version of the model on consumer GPUs with 20GB or more of memory – like RTX 4090, RTX 3090, and Apple M2 Pro, M2 Max, or M2 Ultra Chips with 20GB or more of memory. ## Todo - [x] Open-source the v1 model weights - [x] Train the model on more data, with higher data variance - [ ] Tune the model further with Reward Modelling and RLHF - [ ] Pretrain a model from scratch that specializes in SQL analysis