--- base_model: teknium/OpenHermes-2.5-Mistral-7B datasets: - teknium/OpenHermes-2.5 language: - en license: apache-2.0 tags: - mistral - instruct - finetune - chatml - gpt4 - synthetic data - distillation - mlx model-index: - name: OpenHermes-2-Mistral-7B results: [] --- # TheBlueObserver/OpenHermes-2.5-Mistral-7B-MLX-104ce The Model [TheBlueObserver/OpenHermes-2.5-Mistral-7B-MLX-104ce](https://huggingface.co/TheBlueObserver/OpenHermes-2.5-Mistral-7B-MLX-104ce) was converted to MLX format from [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) using mlx-lm version **0.20.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("TheBlueObserver/OpenHermes-2.5-Mistral-7B-MLX-104ce") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```