--- license: apache-2.0 base_model: openai/whisper-base tags: - whisper-event - generated_from_trainer datasets: - yt metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: yt id type: yt metrics: - name: Wer type: wer value: 66.04630049931912 --- # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the yt id dataset. It achieves the following results on the evaluation set: - Loss: 1.0175 - Wer: 66.0463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4446 | 0.09 | 1000 | 1.2313 | 91.5959 | | 1.0599 | 0.17 | 2000 | 1.1312 | 106.3420 | | 1.1851 | 0.26 | 3000 | 1.0801 | 77.3166 | | 1.0325 | 0.34 | 4000 | 1.0380 | 71.8436 | | 1.008 | 0.43 | 5000 | 1.0175 | 66.0463 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3