--- library_name: transformers license: other base_model: nvidia/segformer-b0-finetuned-ade-512-512 tags: - generated_from_trainer model-index: - name: segformer-b0-segments-sidewalk-finetuned results: [] --- # segformer-b0-segments-sidewalk-finetuned This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2387 - Mean Iou: 0.8160 - Mean Accuracy: 0.8955 - Overall Accuracy: 0.9070 - Accuracy Background: 0.9351 - Accuracy Target: 0.8559 - Iou Background: 0.8665 - Iou Target: 0.7655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Target | Iou Background | Iou Target | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:---------------:|:--------------:|:----------:| | 0.2223 | 1.0 | 51 | 0.2299 | 0.8346 | 0.9082 | 0.9123 | 0.9335 | 0.8830 | 0.8608 | 0.8085 | | 0.1991 | 2.0 | 102 | 0.2313 | 0.8371 | 0.9103 | 0.9136 | 0.9307 | 0.8900 | 0.8622 | 0.8120 | | 0.1905 | 3.0 | 153 | 0.2269 | 0.8398 | 0.9112 | 0.9153 | 0.9368 | 0.8856 | 0.8653 | 0.8143 | | 0.2218 | 4.0 | 204 | 0.2287 | 0.8407 | 0.9119 | 0.9158 | 0.9361 | 0.8877 | 0.8659 | 0.8155 | | 0.2145 | 5.0 | 255 | 0.2275 | 0.8397 | 0.9125 | 0.9150 | 0.9279 | 0.8971 | 0.8637 | 0.8156 | | 0.1905 | 6.0 | 306 | 0.2301 | 0.8395 | 0.9108 | 0.9152 | 0.9383 | 0.8832 | 0.8654 | 0.8137 | | 0.2056 | 7.0 | 357 | 0.2278 | 0.8413 | 0.9116 | 0.9163 | 0.9410 | 0.8821 | 0.8672 | 0.8155 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3