--- library_name: transformers license: other base_model: nvidia/segformer-b0-finetuned-ade-512-512 tags: - generated_from_trainer model-index: - name: segformer-b0-segments-lungs-xray results: [] --- # segformer-b0-segments-lungs-xray This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0589 - Mean Iou: 0.9509 - Mean Accuracy: 0.9747 - Overall Accuracy: 0.9814 - Accuracy Background: 0.9877 - Accuracy Target: 0.9617 - Iou Background: 0.9758 - Iou Target: 0.9260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Target | Iou Background | Iou Target | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:---------------:|:--------------:|:----------:| | 0.1417 | 1.0 | 123 | 0.1330 | 0.9172 | 0.9657 | 0.9673 | 0.9688 | 0.9626 | 0.9574 | 0.8770 | | 0.0957 | 2.0 | 246 | 0.0860 | 0.9425 | 0.9680 | 0.9782 | 0.9878 | 0.9481 | 0.9717 | 0.9133 | | 0.0889 | 3.0 | 369 | 0.0743 | 0.9418 | 0.9734 | 0.9777 | 0.9817 | 0.9650 | 0.9709 | 0.9128 | | 0.076 | 4.0 | 492 | 0.0635 | 0.9494 | 0.9724 | 0.9809 | 0.9889 | 0.9559 | 0.9751 | 0.9237 | | 0.0621 | 5.0 | 615 | 0.0603 | 0.9508 | 0.9734 | 0.9814 | 0.9890 | 0.9578 | 0.9758 | 0.9259 | | 0.0653 | 6.0 | 738 | 0.0589 | 0.9509 | 0.9747 | 0.9814 | 0.9877 | 0.9617 | 0.9758 | 0.9260 | | 0.0593 | 7.0 | 861 | 0.0587 | 0.9507 | 0.9748 | 0.9813 | 0.9875 | 0.9622 | 0.9757 | 0.9258 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3