--- tags: - generated_from_trainer model-index: - name: home/005/th5351/output results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: /home/005/th5351/models/cosmosage-llama3-8b-base/ model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false chat_template: llama3 datasets: - path: /home/005/th5351/datasets/combined_sft.jsonl type: chat_template chat_template: llama3 field_messages: conversations message_field_role: from message_field_content: value roles: system: - system user: - human assistant: - gpt dataset_prepared_path: /home/005/th5351/output/last_run_prepared val_set_size: 0.001 eval_sample_packing: false output_dir: /home/005/th5351/output sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 5e-5 cosine_min_lr_ratio: 0.2 cosine_constant_lr_ratio: 0.8 max_grad_norm: 3.0 seed: 42 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 5 eval_table_size: saves_per_epoch: 1 debug: deepspeed: /home/005/th5351/packages/axolotl/deepspeed_configs/zero2.json ddp_timeout: 3600000 weight_decay: 0.0 fsdp: fsdp_config: ```

# home/005/th5351/output This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3757 | 0.0005 | 1 | nan | | 0.8083 | 0.1999 | 388 | nan | | 0.8005 | 0.3998 | 776 | nan | | 0.7389 | 0.5998 | 1164 | nan | | 0.7269 | 0.7997 | 1552 | nan | | 0.7069 | 0.9996 | 1940 | nan | | 0.5786 | 1.1613 | 2328 | nan | | 0.5385 | 1.3613 | 2716 | nan | | 0.5381 | 1.5612 | 3104 | nan | | 0.5273 | 1.7611 | 3492 | nan | | 0.527 | 1.9610 | 3880 | nan | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1