---
base_model: SeaLLMs/SeaLLM3-7B-Chat
library_name: peft
license: other
tags:
- axolotl
- generated_from_trainer
model-index:
- name: proof-reading-SeaLLM3-7B-Chat-3090-v6
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: SeaLLMs/SeaLLM3-7B-Chat
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: Tippawan/pr-6-seallm-messages-only
type: sharegpt
conversation: chatml
field_messages: messages
chat_template: chatml
dataset_prepared_path:
val_set_size: 0.00 #editted 2
output_dir: ./outputs/outputs_name
sequence_len: 2048
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
push_to_hub: true
hub_model_id: Tippawan/proof-reading-SeaLLM3-7B-Chat-3090-v6 # Replace with your Hugging Face repo ID
use_auth_token: true # Ensure you have set your Hugging Face API token in the environment
hub_private_repo: true # Set to true if you want the repository to be private
hub_strategy: all_checkpoints
save_total_limit: 3
load_best_model_at_end: true
adapter: lora
lora_model_dir: Tippawan/proof-reading-SeaLLM3-7B-Chat-3090-v5
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: proof-reading-SeaLLM3-7B-Chat-3090-v6
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 10 #editted 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
seed: 42
warmup_steps: 10
evals_per_epoch: 1
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# proof-reading-SeaLLM3-7B-Chat-3090-v6
This model is a fine-tuned version of [SeaLLMs/SeaLLM3-7B-Chat](https://huggingface.co/SeaLLMs/SeaLLM3-7B-Chat) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 10
### Training results
### Framework versions
- PEFT 0.12.0
- Transformers 4.45.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1