--- language: - en datasets: - liuhaotian/LLaVA-Instruct-150K pipeline_tag: image-text-to-text inference: false arxiv: 2304.08485 license: llama2 tags: - vision - image-text-to-text --- # LLaVA Model Card ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/FPshq08TKYD0e-qwPLDVO.png) Below is the model card of Llava model 7b, which is copied from the original Llava model card that you can find [here](https://huggingface.co/liuhaotian/llava-v1.5-13b). Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qsl6cd2c8gGtEW1xV5io7S8NHh-Cp1TV?usp=sharing) Or check out our Spaces demo! [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-md-dark.svg)](https://huggingface.co/spaces/llava-hf/llava-4bit) ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. **Model date:** LLaVA-v1.5-7B was trained in September 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## How to use the model First, make sure to have `transformers >= 4.35.3`. The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `` to the location where you want to query images: ### Using `pipeline`: Below we used [`"llava-hf/llava-1.5-7b-hf"`](https://huggingface.co/llava-hf/llava-1.5-7b-hf) checkpoint. ```python from transformers import pipeline from PIL import Image import requests model_id = "llava-hf/llava-1.5-7b-hf" pipe = pipeline("image-to-text", model=model_id) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg" image = Image.open(requests.get(url, stream=True).raw) # Define a chat history and use `apply_chat_template` to get correctly formatted prompt # Each value in "content" has to be a list of dicts with types ("text", "image") conversation = [ { "role": "user", "content": [ {"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"}, {"type": "image"}, ], }, ] prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200}) print(outputs) >>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"} ``` ### Using pure `transformers`: Below is an example script to run generation in `float16` precision on a GPU device: ```python import requests from PIL import Image import torch from transformers import AutoProcessor, LlavaForConditionalGeneration model_id = "llava-hf/llava-1.5-7b-hf" model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(0) processor = AutoProcessor.from_pretrained(model_id) # Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt # Each value in "content" has to be a list of dicts with types ("text", "image") conversation = [ { "role": "user", "content": [ {"type": "text", "text": "What are these?"}, {"type": "image"}, ], }, ] prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" raw_image = Image.open(requests.get(image_file, stream=True).raw) inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16) output = model.generate(**inputs, max_new_tokens=200, do_sample=False) print(processor.decode(output[0][2:], skip_special_tokens=True)) ``` ### Model optimization #### 4-bit quantization through `bitsandbytes` library First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with: ```diff model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, + load_in_4bit=True ) ``` #### Use Flash-Attention 2 to further speed-up generation First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with: ```diff model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, + use_flash_attention_2=True ).to(0) ``` ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.