--- library_name: peft tags: - parquet - text-classification datasets: - tweet_eval metrics: - accuracy base_model: nurkayevaa/autonlp-bert-covid-407910458 model-index: - name: nurkayevaa_autonlp-bert-covid-407910458-finetuned-lora-tweet_eval_sentiment results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: validation args: sentiment metrics: - type: accuracy value: 0.707 name: accuracy --- # nurkayevaa_autonlp-bert-covid-407910458-finetuned-lora-tweet_eval_sentiment This model is a fine-tuned version of [nurkayevaa/autonlp-bert-covid-407910458](https://huggingface.co/nurkayevaa/autonlp-bert-covid-407910458) on the tweet_eval dataset. It achieves the following results on the evaluation set: - accuracy: 0.707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | accuracy | train_loss | epoch | |:--------:|:----------:|:-----:| | 0.3165 | None | 0 | | 0.7005 | 0.7344 | 0 | | 0.6975 | 0.6591 | 1 | | 0.701 | 0.6363 | 2 | | 0.707 | 0.6200 | 3 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.2