--- base_model: - Sao10K/L3-8B-Lunaris-v1 tags: - merge - mergekit - lazymergekit - Sao10K/L3-8B-Lunaris-v1 --- # L3-Lunaris-v1-15B L3-Lunaris-v1-15B is a merge of the following model with itself using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Sao10K/L3-8B-Lunaris-v1](https://huggingface.co/Sao10K/L3-8B-Lunaris-v1) ## 🧩 Configuration ```yaml dtype: bfloat16 merge_method: passthrough slices: - sources: - layer_range: [0, 24] model: Sao10K/L3-8B-Lunaris-v1 - sources: - layer_range: [8, 24] model: Sao10K/L3-8B-Lunaris-v1 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [8, 24] model: Sao10K/L3-8B-Lunaris-v1 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [24, 32] model: Sao10K/L3-8B-Lunaris-v1 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Tremontaine/L3-Lunaris-v1-15B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```