--- base_model: - Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B - Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B - Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B - Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B tags: - merge - mergekit - lazymergekit - Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B --- # Llama3-UmbralMind-v1-15M Llama3-UmbralMind-v1-15M is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B) * [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B) * [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B) * [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B) ## 🧩 Configuration ```yaml dtype: bfloat16 merge_method: passthrough slices: - sources: - layer_range: [0, 24] model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B - sources: - layer_range: [8, 24] model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [8, 24] model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [24, 32] model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Tremontaine/Llama3-UmbralMind-v1-15M" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```