--- license: creativeml-openrail-m datasets: - O1-OPEN/OpenO1-SFT language: - en base_model: prithivMLmods/Llama-3.1-8B-Open-SFT pipeline_tag: text-generation library_name: transformers tags: - Chain-of-Thought Activation - Llama3.1 - 8B - CoT - SFT - text-generation-inference - Ollama - safetensors - Question Answering - Math - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.1-8B-Open-SFT-Q4_K_M-GGUF This model was converted to GGUF format from [`prithivMLmods/Llama-3.1-8B-Open-SFT`](https://huggingface.co/prithivMLmods/Llama-3.1-8B-Open-SFT) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/prithivMLmods/Llama-3.1-8B-Open-SFT) for more details on the model. --- Model details: - The Llama-3.1-8B-Open-SFT model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct, designed for advanced text generation tasks, including conversational interactions, question answering, and chain-of-thought reasoning. This model leverages Supervised Fine-Tuning (SFT) using the O1-OPEN/OpenO1-SFT dataset to provide enhanced performance in context-sensitive and instruction-following tasks. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.1-8B-Open-SFT-Q4_K_M-GGUF --hf-file llama-3.1-8b-open-sft-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.1-8B-Open-SFT-Q4_K_M-GGUF --hf-file llama-3.1-8b-open-sft-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.1-8B-Open-SFT-Q4_K_M-GGUF --hf-file llama-3.1-8b-open-sft-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.1-8B-Open-SFT-Q4_K_M-GGUF --hf-file llama-3.1-8b-open-sft-q4_k_m.gguf -c 2048 ```